Reliability Analysis of Distribution Network with Integrated Photovoltaic Power Generation

2014 ◽  
Vol 672-674 ◽  
pp. 956-960
Author(s):  
Ke Huang ◽  
Xin Wang ◽  
Yi Hui Zheng ◽  
Li Xue Li ◽  
Yan Ling Liu

To analyze the influence of distribution network with grid-connected photovoltaic (PV) generation on the power supply reliability, in this paper it firstly regards interconnected PV generation as an equivalent generator with rated capacity as well as the island operation mode of PV to set up a model for reliability calculation and analysis. Based on the network equivalent method, the structure of distribution system with PV is simplified and then the reliability indexes of distribution system are worked out based on Failure Mode and Effects Analysis (FMEA). At last, a comparative calculation between the distribution network with incorporated PV generations and that without PV generations is made. After analyzing a real example, the results suggest that integrating PV power generations reasonably into the distribution network can enhance the reliability of whole distribution system.

IJOSTHE ◽  
2017 ◽  
Vol 4 (3) ◽  
pp. 6 ◽  
Author(s):  
Sarika Gautami ◽  
Rajeev Tiwari

Photovoltaic power generation refers to the use of solar photovoltaic cells to the solar radiation can be directly transformed into electricity generation. Distributed photovoltaic power generation, refers to the construction in the vicinity of the user's location, the operation mode to the user side of spontaneous self-occupied mainly, the excess power on the Internet, and in the distribution system to balance the characteristics of the photovoltaic power generation facilities. Distributed photovoltaic power generation follow the principle of local conditions, clean and efficient, decentralized layout, the principle of the nearest use, and make full use of local solar energy resources, alternative and reduce fossil energy consumption. This paper aims to investigate and emphasize the importance of the grid-connected PV system. The investigation was conducted to critically review the literature on expected potential problems associated with issues of PV based grid system. The main purpose of this paper is to discuss the basic understanding of photovoltaic (PV) based distributed generation power system and how these power flows will influence the performance and stability of a power system. Some of the PV grid integration issues such as voltage regulation, voltage sags, harmonic distortion, etc are also discussed and possible solutions are also mentioned.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 109 ◽  
Author(s):  
Jingjing Tu ◽  
Yonghai Xu ◽  
Zhongdong Yin

For the integration of distributed generations such as large-scale wind and photovoltaic power generation, the characteristics of the distribution network are fundamentally changed. The intermittence, variability, and uncertainty of wind and photovoltaic power generation make the adjustment of the network peak load and the smooth control of power become the key issues of the distribution network to accept various types of distributed power. This paper uses data-driven thinking to describe the uncertainty of scenery output, and introduces it into the power flow calculation of distribution network with multi-class DG, improving the processing ability of data, so as to better predict DG output. For the problem of network stability and operational control complexity caused by DG access, using KELM algorithm to simplify the complexity of the model and improve the speed and accuracy. By training and testing the KELM model, various DG configuration schemes that satisfy the minimum network loss and constraints are given, and the voltage stability evaluation index is introduced to evaluate the results. The general recommendation for DG configuration is obtained. That is, DG is more suitable for accessing the lower point of the network voltage or the end of the network. By configuring the appropriate capacity, it can reduce the network loss, improve the network voltage stability, and the quality of the power supply. Finally, the IEEE33&69-bus radial distribution system is used to simulate, and the results are compared with the existing particle swarm optimization (PSO), genetic algorithm (GA), and support vector machine (SVM). The feasibility and effectiveness of the proposed model and method are verified.


2020 ◽  
Vol 309 ◽  
pp. 03007
Author(s):  
Linghui Yang ◽  
Yun Wang ◽  
Min Wang ◽  
Chao Wu ◽  
Jian Zhou ◽  
...  

Modern power system can identify component faults, isolate faults and resume operation quickly. In view of the problem that the distribution of line load in distribution network is not reasonable and it is easy to fall into the self-organized critical state, this paper introduces power flow entropy as an evaluation index to measure the robustness of power network reconstruction. Based on the power supply capability and node load level of distributed power supply in the process of network reconstruction, a strategy of island division is proposed. Then, a mathematical model is set up to minimize power flow entropy, network loss and node voltage drop, and the problem of network reconstruction after fault is solved by the improved chaos theory and binary particle swarm optimization algorithm. Finally, an example of IEEE-33 node distribution system is given to verify the feasibility of the proposed strategy and the effectiveness of the algorithm.


2014 ◽  
Vol 960-961 ◽  
pp. 1376-1380
Author(s):  
Chong Xin Xu ◽  
Yan Jun Jiao

Power generation becomes a main way of using new energy. However, the access of distributed generation(DG) causes the ordinary protection system develop a series of problems. In this paper, the structure of distribution network with DG is introduced firstly.Secondly,it is analysed that the effect that DG brings to distribution network protection, and then a new protection scheme of distribution network with DG is put forward. The segment I, II of direction three-current protection on the line which is at the upstream of DG, and the next line’s segment I, II consists of a simple communication unit. Through the comprehensive judgment of two protections’ action results, fault can be isolated in minimum range quickly and accurately. Finally, the correctness and feasibility of the new protection principle are verified by simulating a 10KV distribution system.


2015 ◽  
Vol 785 ◽  
pp. 541-545 ◽  
Author(s):  
K.G. Ing ◽  
Hazlie Mokhlis ◽  
Hazlee Azil Illias ◽  
Jasrul Jamani Jamian ◽  
Muhammad Mohsin Aman

This paper presents a new method to determine the best configuration for a distribution system for a day considering Photovoltaic (PV) generation and load profile. In the first part, the hourly optimal configuration for a day is obtained by using Imperialist Competitive Algorithm (ICA) and in second part; a selective approach based on minimum total daily power loss is used to select the optimal daily configuration. The proposed method is validated on IEEE 33 bus test system.


Sign in / Sign up

Export Citation Format

Share Document