Dynamic Analysis of Three-Dimensional Flexibility of Gear Structure Based on Finite Element Method

2011 ◽  
Vol 411 ◽  
pp. 33-37
Author(s):  
Miao Chu ◽  
Shao Hui Tian ◽  
Yan Chao Zhang ◽  
Xiao Chun Pan

The paper established a three-dimensional flexibility dynamical model of gear structure based on the theory of finite element method. It presented the natural frequency of the gear elastomer and the analytical expression of natural functions and the simulative results. The results showed good agreement. This provided a study method for the vibration analysis of the gear structure body, and established the basis for studying the characteristics of acoustic radiation and the dynamic design of gears.

2020 ◽  
Vol 28 (04) ◽  
pp. 2050004
Author(s):  
Buchao An ◽  
Chao Zhang ◽  
Dejiang Shang ◽  
Yan Xiao ◽  
Imran Ullah Khan

A combined Finite Element Method with Normal Mode (FEM-NM) is proposed for calculation of the acoustic field radiated by a three-dimensional structural source in shallow water. The FEM is used to calculate the near range acoustic field, then the modes expansion at the vertical and azimuthal direction is performed at a certain coupling range. Hence, the true three-dimensional acoustic field at any range is obtained rapidly by the NM theory. The numerical examples show the efficiency and accuracy of this method. The coupling range and the truncation of the vertical modes hardly affect the far field results.


2018 ◽  
Vol 7 (4) ◽  
pp. 213 ◽  
Author(s):  
Jwan Kh. Mohammed ◽  
Younis Kh. Khdir ◽  
Safeen Y. Kasab

In this study that spur gears are chosen, contact stress of spur gear is presented under the effect of rotational speed. Three-dimensional simulation of dynamic analysis of gears designed and modeled using ANSYS software. The dynamic analysis included in the determination of dynamic stresses analysis. Contact stress is theoretically calculated and analyzed and numerically estimated using both Hertzian mathematical model and finite element method respectively. Different values of rotational speed used to study its effect on contact stress. Both methods compared by evaluating the percentage error of contact stress, and the modeling of the spur gear and stress analysis of spur gear carried out using SOLID WORK and ANSYS V14, respectively. The most significant note in this study concludes that increasing speed causes vibration and pitting failure due to repetitions.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Yi Li ◽  
Ming Lv ◽  
Shi-ying Wang ◽  
Hui-bin Qin ◽  
Jun-fan Fu

To reflect vibration more comprehensively and to satisfy the machining demand for high-order frequencies, we presented a three-dimensional free vibration analysis of gears with variable thickness using the Chebyshev–Ritz method based on three-dimensional elasticity theory. We derived the eigenvalue equations. We divided the gear model into three annular parts along the locations of the step variations, and the admissible function was a Ritz series that consisted of a Chebyshev polynomial multiplying boundary function. The convergence study demonstrated the high accuracy of the present method. We used a hammering method for a modal experiment to test two annular plates and one gear’s eigenfrequencies in a completely free condition. We also applied the finite element method to solve the eigenfrequencies. Through a comparative analysis of the frequencies obtained by these three methods, we found that the results achieved by the Chebyshev–Ritz method were close to those obtained from the experiment and finite element method. The relative errors of four sets of data were greater than 4%, and the errors of the other 48 sets were less than 4%. Thus, it was feasible to use the Chebyshev–Ritz method to solve the eigenfrequencies of gears with variable thickness.


Sign in / Sign up

Export Citation Format

Share Document