Dynamic Behavior for an SIRS Model with Nonlinear Incidence Rate

2012 ◽  
Vol 479-481 ◽  
pp. 1495-1498 ◽  
Author(s):  
Jun Hong Li ◽  
Ning Cui ◽  
Hong Kai Sun

An SIRS epidemic model with nonlinear incidence rate is studied. It is assumed that susceptible and infectious individuals have constant immigration rates. By means of Dulac function and Poincare-Bendixson Theorem, we proved the global asymptotical stable results of the disease-free equilibrium. It is then obtained the model undergoes Hopf bifurcation and existence of one limit cycle. Some numerical simulations are given to illustrate the analytical results.

2012 ◽  
Vol 155-156 ◽  
pp. 23-26
Author(s):  
Jun Hong Li ◽  
Ning Cui ◽  
Liang Cui ◽  
Cai Juan Li

In this paper, we study the global dynamics of an SIRS epidemic model with nonlinear inci- dence rate. By means of Dulac function and Poincare-Bendixson Theorem, we proved the global asy- mptotical stable results of the disease-free equilibrium. It is then obtained the model undergoes Hopf bifurcation and existence of one limit cycle. Some numerical simulations are given to illustrate the an- alytical results.


Author(s):  
A. M. Yousef ◽  
S. M. Salman

Abstract:In this work we study a fractional-order susceptible-infective-recovered-susceptible (SIRS) epidemic model with a nonlinear incidence rate. The incidence is assumed to be a convex function with respect to the infective class of a host population. Local and uniform stability analysis of the disease-free equilibrium is investigated. The conditions for the existence of endemic equilibria (EE) are given. Local stability of the EE is discussed. Conditions for the existence of Hopf bifurcation at the EE are given. Most importantly, conditions ensuring that the system exhibits backward bifurcation are provided. Numerical simulations are performed to verify the correctness of results obtained analytically.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Junhong Li ◽  
Ning Cui

This paper considers an SIRS model with nonlinear incidence rate and treatment. It is assumed that susceptible and infectious individuals have constant immigration rates. We investigate the existence of equilibrium and prove the global asymptotical stable results of the endemic equilibrium. We then obtained that the model undergoes a Hopf bifurcation and existences a limit cycle. Some numerical simulations are given to illustrate the analytical results.


2012 ◽  
Vol 157-158 ◽  
pp. 1220-1223
Author(s):  
Ning Cui ◽  
Jun Hong Li ◽  
Jiao Qu ◽  
Hong Dan Xue

This paper considers an SEIQS model with nonlinear incidence rate. By means of Lyapunov function and LaSalle’s invariant set theorem, we proved the global asymptotical stable results of the disease-free equilibrium. It is then obtained the sufficent conditions for the global stability of the endemic equilibrium by the compound matrix theory. In addition, we also study the phenomena of limit cycle of the systems with the numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document