scholarly journals Assembly Line Balancing the Comparison of COMSOAL and MSNSH Technique in Motorcycle Manufacturing Company

2012 ◽  
Vol 605-607 ◽  
pp. 166-174
Author(s):  
Areeda Lerttira ◽  
Prasad K.D.V. Yarlagadda

Today’s highly competitive market influences the manufacturing industry to improve their production systems to become the optimal system in the shortest cycle time as possible. One of most common problems in manufacturing systems is the assembly line balancing problem. The assembly line balancing problem involves task assignments to workstations with optimum line efficiency The most common purposes of Computer Method for Sequencing Operations for Assembly Line (COMSOAL) are to minimise idle time, optimise production line efficiency, and minimise the number of workstations. Therefore, this paper leads to implement COMSOAL to balance an assembly line in the motorcycle industry. The new solution by COMSOAL will be used to compare with the previous solution that was developed by Multi‐Started Neighborhood Search Heuristic (MSNSH), which will result in five aspects including cycle time, total idle time, line efficiency, average daily productivity rate, and the workload balance. The journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” will be used as the case study for this project.

Author(s):  
Nurhanani Abu Bakar ◽  
Mohammad Fadzli Ramli ◽  
Mohd Zakimi Zakaria ◽  
Tan Chan Sin ◽  
Hafiz Masran

<p>Currently, problem in assembly line has created so much attention, particularly in manufacturing area. Similar to this case study as they faced with problems regarding workstation in production line of electrical industry. There exist some cases where workstations in assembly line are experienced with bottleneck and suffered from high idle time. Thus, four heuristic methods are used for minimizing number or workstations and improve the bottleneck problems at the same time. In this case study, LCR, RPW and LPT have successfully minimized the number of workstations from 19 to 16. This solution has affected the layout of assembly line. Different from SPT that manage to improve the bottleneck among workstations by reducing number of workstations from 19 to 17 without changing the line layout. Therefore, both solution has brought an option for an engineer to choose which decision to be used in this assembly line in order to increase the line efficiency.</p>


2014 ◽  
Vol 13 (02) ◽  
pp. 113-131 ◽  
Author(s):  
P. Sivasankaran ◽  
P. Shahabudeen

Balancing assembly line in a mass production system plays a vital role to improve the productivity of a manufacturing system. In this paper, a single model assembly line balancing problem (SMALBP) is considered. The objective of this problem is to group the tasks in the assembly network into a minimum number of workstations for a given cycle time such that the balancing efficiency is maximized. This problem comes under combinatorial category. So, it is essential to develop efficient heuristic to find the near optimal solution of the problem in less time. In this paper, an attempt has been made to design four different genetic algorithm (GA)-based heuristics, and analyze them to select the best amongst them. The analysis has been carried out using a complete factorial experiment with three factors, viz. problem size, cycle time, and algorithm, and the results are reported.


2013 ◽  
Vol 816-817 ◽  
pp. 1169-1173
Author(s):  
Usman Attique ◽  
Abdul Ghafoor ◽  
Riaz Ahmed ◽  
Shahid Ikramullah

Various exact and heuristic methods have been proposed for assembly line balancing problem (ALBP) but unequal multiple operators have not been considered much. In this paper we present a novel approach of assembly line balancing Type-2 with unequal multiple operators by using an already developed code in Matlab (Tomlab modeling platform). The adopted approach can be applied at line balancing problems ranging from few to hundreds of work elements to achieve minimum cycle time with very less computational effort.


Informatica ◽  
2020 ◽  
Vol 44 (2) ◽  
Author(s):  
Huong Mai Dinh ◽  
Dung Viet Nguyen ◽  
Long Van Truong ◽  
Thuan Phan Do ◽  
Thao Thanh Phan ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ashish Yadav ◽  
Shashank Kumar ◽  
Sunil Agrawal

PurposeMulti-manned assembly lines are designed to produce large-sized products, such as automobiles. In this paper, a multi-manned assembly line balancing problem (MALBP) is addressed in which a group of workers simultaneously performs different tasks on a workstation. The key idea in this work is to improve the workstation efficiency and worker efficiency of an automobile plant by minimizing the number of workstations, the number of workers, and the cycle time of the MALBP.Design/methodology/approachA mixed-integer programming formulation for the problem is proposed. The proposed model is solved with benchmark test problems mentioned in research papers. The automobile case study problem is solved in three steps. In the first step, the authors find the task time of all major tasks. The problem is solved in the second step with the objective of minimizing the cycle time for the sub-tasks and major tasks, respectively. In the third step, the output results obtained from the second step are used to minimize the number of workstations using Lingo 16 solver.FindingsThe experimental results of the automobile case study show that there is a large improvement in workstation efficiency and worker efficiency of the plant in terms of reduction in the number of workstations and workers; the number of workstations reduced by 24% with a cycle time of 240 s. The reduced number of workstations led to a reduction in the number of workers (32% reduction) working on that assembly line.Practical implicationsFor assembly line practitioners, the results of the study can be beneficial where the manufacturer is required to increased workstation efficiency and worker efficiency and reduce resource requirement and save space for assembling the products.Originality/valueThis paper is the first to apply a multi-manned assembly line balancing approach in real life problem by considering the case study of an automobile plant.


Sign in / Sign up

Export Citation Format

Share Document