Dye-Sensitized Solar Cells Based on Three-Dimensional Web-Like Structure Anodes

2012 ◽  
Vol 629 ◽  
pp. 332-338 ◽  
Author(s):  
Zhi Hua Tian ◽  
Jian Xi Yao ◽  
Mi Na Guli

TiO2 films with three-dimensional web-like structure have been prepared by the photo polymerization-induced phase separation method (PIPS). Scanning electron microscopy and X-ray diffraction were used to characterize the as-prepared TiO2 films. The results showed that the film texture could be tuned by changing the composition of the precursor solution. The TiO2 film with web-like structure exhibited high photocatalytic activity for the degradation of methylene blue (MB) dye. The as-prepared films were used as the photo-anodes in dye-sensitized solar cells (DSCs). The photoelectric conversion efficiency of the DSCs was significantly enhanced by changing the POGTA/TTB in the precursor solution. Because of the increased dye adsorption active sites and efficient electron transport in the TiO2 anode film, a photoelectric conversion efficiency of 3.015% was obtained.

2014 ◽  
Vol 953-954 ◽  
pp. 1095-1098 ◽  
Author(s):  
Jun Zhang ◽  
Ya Han Wu ◽  
Fang Xue ◽  
Meng Jun Yuan ◽  
Yan Huo ◽  
...  

The structural morphology, arrangement of the nanocrystalline particles, porosity factor, surface state, crystalline phase and specific area of photoelectrode film have great influence on photoelectric performance of dye sensitized solar cells (DSSCs). At present, using TiO2 as the photoelectrode in the DSSC material has achieved very good photoelectric conversion efficiency. In this paper, the plating method is adopted to directly deposited the titanium coating on the conductive glass substrate, oxidizing the surface of titanium film, so that it is generated on the surface of titanium dioxide oxidation layer. Making it as the DSSC photoelectrode, obtained relative high photoelectric conversion efficiency.


RSC Advances ◽  
2015 ◽  
Vol 5 (62) ◽  
pp. 50483-50493 ◽  
Author(s):  
Malihe Afrooz ◽  
Hossein Dehghani

In this study, triphenyl phosphate (TPP) is applied as an effective and inexpensive additive in the dye sensitized solar cells (DSSCs) and an increase in the photoelectric conversion efficiency is obtained of almost 24%.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Che-Lung Lee ◽  
Wen-Hsi Lee ◽  
Cheng-Hsien Yang

Triazoloisoquinoline-based organic dyestuffs were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs). After cosensitization with ruthenium complex, the triazoloisoquinoline-based organic dyestuffs overcame the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO2film and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 49%. After addition of a triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 6.23% to 7.84%, and the overall conversion efficiency increased by about 26%. As a consequence, this low molecular weight organic dyestuff is a promising candidate as coadsorbent and cosensitizer for highly efficient dye-sensitized solar cells.


2018 ◽  
Vol 42 (17) ◽  
pp. 14453-14458 ◽  
Author(s):  
Rongfang Zhao ◽  
Dongmei Tang ◽  
Qianhui Wu ◽  
Wenlong Li ◽  
Xiue Zhang ◽  
...  

When SnO2/CeO2:Yb,Er HNSs act as an assistant layer in dye-sensitized solar cells, the photoelectric conversion efficiency is enhanced to 8.66%.


2016 ◽  
Vol 52 (74) ◽  
pp. 11124-11126 ◽  
Author(s):  
Yuping Wang ◽  
Yang Qu ◽  
Kai Pan ◽  
Guofeng Wang ◽  
Yadong Li

One dimensional hierarchical BaWO4:Eu3+ nanowires have been prepared via a hydrothermal method for the first time.


2016 ◽  
Vol 16 (4) ◽  
pp. 3622-3627
Author(s):  
Yang Xu ◽  
Xina Wang ◽  
Rong Liu ◽  
Hao Wang

Three-dimensional stacking of ZnO nanorods on conducting aluminum-doped ZnO (AZO) glass were studied as efficient photoanodes of dye sensitized solar cells (DSSCs). By changing hydrothermal growth time and cycle times, the thickness of ZnO nanorods stacking films varied from 30 μm to 64 μm, and its influence on the energetic conversion efficiency of the DSSCs based on the stacking films photoanodes was investigated. The loading density of N719 on the surface of ZnO nanorods was studied to increase the efficiency of the cells. Annealing experiments showed that the AZO substrates remained good conductors until heated above 350 °C. A photoelectric conversion efficiency as high as ∼2.0% together with Isc of ∼9.5 mA/cm2, Voc of ∼0.5 V and FF of ∼41.4% was achieved for the DSSC using 50 μm-thick film stacking by ZnO nanorods as photoanode and N719 as sensitizer under illumination of AM1.5G solar light (power density of 100 mW/cm2). A charge separation and transfer mechanism was proposed for the ZnO nanorods stacking electrode-based DSSCs.


Sign in / Sign up

Export Citation Format

Share Document