tio2 nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

4880
(FIVE YEARS 1544)

H-INDEX

123
(FIVE YEARS 22)

2022 ◽  
Vol 31 ◽  
pp. 100782
Author(s):  
F.H. Xiao ◽  
J. Wang ◽  
D.G. Wang ◽  
J.Q. Zhai ◽  
G.X. Lu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 206 ◽  
pp. 112631
Author(s):  
Truong Thi Vu Nu ◽  
Nhu Hoa Thi Tran ◽  
Phuoc Loc Truong ◽  
Bach Thang Phan ◽  
Minh Tuan Nguyen Dinh ◽  
...  

Author(s):  
M. M. Mikhailov ◽  
A. N. Lapin ◽  
O. A. Alekseeva ◽  
S. A. Yuryev ◽  
E. Yu. Koroleva

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 239
Author(s):  
Madalina Elena David ◽  
Rodica Mariana Ion ◽  
Ramona Marina Grigorescu ◽  
Lorena Iancu ◽  
Alina Maria Holban ◽  
...  

This research focuses on the synthesis of multi-walled carbon nanotubes (MWCNTs) decorated with TiO2 nanoparticles (NPs) and incorporated in cellulose acetate-collagen film in order to obtain a new biomaterial with potential biomedical applications and improved antimicrobial activity. The successful decoration of the MWCNTs with TiO2 NPs was confirmed by several structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The obtained nanocomposites were further incorporated into cellulose acetate-collagen films, at different concentrations and absorption kinetics, antimicrobial activity and in vitro biocompatibility of the obtained films was investigated. The antimicrobial tests sustained that the presence of the nanocomposites into the polymeric matrix is an important aspect in increasing and maintaining the antimicrobial activity of the polymeric wound dressings over time. The biocompatibility and cytotoxicity of the obtained films was evaluated using cellular viability/proliferation assay and fluorescent microscopy which revealed the ability of the obtained materials as potential wound dressing biomaterial.


Sign in / Sign up

Export Citation Format

Share Document