Study on Crack Tip Field of Shape Memory Alloy Board under Torsion Load

2013 ◽  
Vol 663 ◽  
pp. 397-402
Author(s):  
Bo Zhou ◽  
Tai Yue Yin ◽  
Shi Feng Xue

This paper focuses on the thermo-mechanical behaviors of the shape memory alloy board with a crack and under the torsion load. A stress field equation from mechanics of elasticity is used to describe the stress distribution around the crack tip in the shape memory alloy board. A martensitic phase transition equation is supposed to predict the martensitic phase transition behaviors of the field near the crack tip in the shape memory alloy board. The martensitic phase transition zones near the crack tip in the shape memory alloy board under the torsion load are numerically described based on the stress field equation and martensitic phase transition equation at various temperatures. Results show that the stress field equation and martensitic phase transition equation can predict the thermo-mechanical behaviors of the shape memory alloy board with a crack and under the torsion load effectively.

2013 ◽  
Vol 357-360 ◽  
pp. 1437-1440
Author(s):  
Bo Zhou ◽  
Jun Lv ◽  
Dong Xue Wang

The methods to define the material parameters related to the super-elasticity of shape memory alloy in the software of ANSYS are introduced. The mechanical behaviors with super-elasticity occurring in the shape memory alloy are numerically simulated by the software ANSYS. The stress field near crack-tip of mode I in the material of shape memory alloy with super-elasticity are numerically simulated by the software ANSYS. Results of numerical simulation show that the software ANSYS is able to simulate the fracture behaviors occurring in the shape memory alloy structures effectively.


2011 ◽  
Vol 142 ◽  
pp. 138-141 ◽  
Author(s):  
Bo Zhou ◽  
Xiao Gang Guo ◽  
Gang Ling Hou ◽  
Xu Kun Li

In this paper a phase transformation equation is supposed to describe the phase transformation behaviors of the shape memory alloy (SMA) under complex stress state. The stress field near crack-tip of mode I in SMA at various temperatures is investigated based on the supposed phase transformation equation and linear elastic fracture mechanics. Results show both the martensite region and the mixed region of martensite and austenite near the crack-tip become larger with the decrease of temperature. The fracture mechanics behaviors of SMA are much influenced by the temperature.


2012 ◽  
Vol 457-458 ◽  
pp. 744-747
Author(s):  
Bo Zhou ◽  
Yan Yan Hou ◽  
Jun Lv

This paper focuses on the thermo-mechanical behaviors of a shape memory alloy (SMA) plate with a crack of mode I. A phase transformation equation is supposed to express the phase transformation behaviors of SMA under complex stress state. The stress field near the crack tip is described based on linear elastic mechanics. The martensitic phase transformation zones near the crack tip at various temperatures are numerically determined.


Sign in / Sign up

Export Citation Format

Share Document