Temperature Distribution of High Prandtl Number Liquid Bridge under Zero Gravity

2013 ◽  
Vol 712-715 ◽  
pp. 1638-1641
Author(s):  
Ru Quan Liang ◽  
Shuo Yang ◽  
Jun Hong Ji ◽  
Fu Sheng Yan ◽  
Ji Cheng He

A numerical model has been developed to investigate temperature field of high prandtl number liquid bridge under zero-gravity condition, and numerical simulations have been carried out. The Navier-Stokes equations coupled with the energy conservation equation on a staggered grid. In numerical calculations, we considered not only the free surface deformation but also the effects of ambient air. Overall numerical analysis of liquid bridge was carried out by level set method of mass conservation to capture two phase interfaces. Simultaneously, results of temperature field in liquid bridge and ambient gas-phase were given.

2012 ◽  
Vol 248 ◽  
pp. 218-223
Author(s):  
Ru Quan Liang ◽  
Wen Jun Duan ◽  
Guang Dong Duan ◽  
Ja Ba

A numerical simulation has been conducted to investigate the effect of the external vibration referred to as g-jitter on the marangoni convection in liquid bridge of high Pr number fluid by taking both the dynamic free surface deformation and ambient air effects into consideration. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the free surface deformation is captured by introducing the mass conserving level set approach. The pressure distributions within the liquid bridge under external vibrations were investigated, and the results show that the pressure in liquid bridge presents periodic oscillation under external vibration. The closer to the hot disk, the greater the relative pressure value is. Moreover, the surface deformation and the surface amplitude under external vibration were investigated as well.


2013 ◽  
Vol 353-356 ◽  
pp. 3611-3614
Author(s):  
Ru Quan Liang ◽  
Shuo Yang ◽  
Jun Hong Ji ◽  
Ji Cheng He

This paper investigated the flow structure in liquid bridge of high Pr Number fluid under zero gravity condition. The free surface deformation and the effects of gas phase around liquid bridge were considered. Navier-Stokes equations coupled with the energy conservation equation were solved on a staggered grid. The two-phase surface was captured by using the mass conserving level set method. The results indicated that location of vortex center move gradually toward the free surface due to thermocapillary convection. The flow velocity nearby the surface of liquid bridge is faster than the internal flow velocity, and the overall velocity level tends to decline with time evolution.


2013 ◽  
Vol 712-715 ◽  
pp. 1630-1633
Author(s):  
Ru Quan Liang ◽  
Shuo Yang ◽  
Fu Sheng Yan ◽  
Jun Hong Ji ◽  
Ji Cheng He

The overall numerical analysis of liquid bridge for high Pr number fluid and flow field of ambient air under the zero-gravity environment was carried out in the present paper. The paper used level set method of mass conservation to capture two phase interfaces. Not only the free surface deformation was considered, but also the effect of ambient gas was taken into account. Simultaneously, results of stream function in liquid bridge and ambient gas-phase were given.


2014 ◽  
Vol 580-583 ◽  
pp. 2890-2893
Author(s):  
Ru Quan Liang ◽  
Zhi Hui Zhang ◽  
Tai Yin Gao ◽  
Fu Sheng Yan

In this paper, the vertical vibration influence on the surface velocity of a 5cSt silicone oil liquid bridge has been investigated numerically. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the two-phase surface is captured by using the mass conserving level set method. The present results indicate that the axial and radial surface velocities of the liquid bridge are suppressed by the external vertical vibration.


2004 ◽  
Vol 16 (5) ◽  
pp. 1746-1757 ◽  
Author(s):  
D. E. Melnikov ◽  
V. M. Shevtsova ◽  
J. C. Legros

2015 ◽  
Vol 35 ◽  
pp. 07002
Author(s):  
Shuo Yang ◽  
Ruquan Liang ◽  
Jicheng He

2005 ◽  
Vol 56 (6) ◽  
pp. 601-611 ◽  
Author(s):  
D.E. Melnikov ◽  
V.M. Shevtsova ◽  
J.C. Legros

2012 ◽  
Vol 256-259 ◽  
pp. 2412-2415
Author(s):  
Ru Quan Liang ◽  
Shuo Yang ◽  
Jun Hong Ji ◽  
Ji Cheng He

From engineering actual conditions of single crystal grown by floating zone method, Navier-Stokes equations coupled with the energy conservation equation were solved on a staggered grid based on the half floating area physical model. The two-phase surface was captured by using the mass conserving level set method. The internal flow structure of flow field of high Pr number liquid bridge was studied under uniform magnetic field environment in microgravity, which is important to optimize the process of the crystal growth.


Sign in / Sign up

Export Citation Format

Share Document