Leaf-Litter Decomposition Dynamic, Carbon Loss and Nutrient Return for Moso Bamboo Forest with Different Litter Mass Accumulation

2013 ◽  
Vol 726-731 ◽  
pp. 4222-4225 ◽  
Author(s):  
Yi Lin Tang ◽  
Ben Zhi Zhou ◽  
Xiao Gai Ge ◽  
Xiao Ming Wang ◽  
Qian Li

To provide an important basic knowledge for the biogeochemical cycle of bamboo forest ecosystem, particularly the cycling of global carbon, we studied decomposition dynamics of leaf-litter with different mass accumulation in moso bamboo forest. Our study area located in Miaoshanwu nature reserve, Fuyang, Zhejiang province. Based on the survey, we concluded that: (1) the sequence of remaining mass of leaf-litter with different mass accumulation after 240 days' decomposition from the most to the least was in the following order: 30g (58.53%) > 60g (51.92%) > 90g (48.48%), implying that leaf-litter with more mass accumulation decomposed faster in the unit area. (2)The more accumulated leaf-litter lead to more TOC loss in leaf-litter which will not helpful for TOC increase on surface soil carbon pools. This implying that the faster leaf-litter decomposed, the less TOC increased on surface soil carbon pools in 240 day s' observation. (3)The concentration of N, P, K and Ca showed the similar tendency with initially increasing but decreasing gradually in the following stage and then increasing again in the next stage. And concentration of Mg, Fe, Cu and Zn increased gradually in the period of 0-240 days.

CATENA ◽  
2019 ◽  
Vol 180 ◽  
pp. 309-319 ◽  
Author(s):  
Chuanbao Yang ◽  
Huijing Ni ◽  
Zheke Zhong ◽  
Xiaoping Zhang ◽  
Fangyuan Bian

CATENA ◽  
2018 ◽  
Vol 169 ◽  
pp. 59-68 ◽  
Author(s):  
Chong Li ◽  
Yongjun Shi ◽  
Guomo Zhou ◽  
Yufeng Zhou ◽  
Lin Xu ◽  
...  

Geoderma ◽  
2021 ◽  
Vol 403 ◽  
pp. 115212
Author(s):  
Kaiping Huang ◽  
Yongfu Li ◽  
Junguo Hu ◽  
Caixian Tang ◽  
Shaobo Zhang ◽  
...  

2010 ◽  
Vol 260 (8) ◽  
pp. 1287-1294 ◽  
Author(s):  
Tomonori Kume ◽  
Yuka Onozawa ◽  
Hikaru Komatsu ◽  
Kenji Tsuruta ◽  
Yoshinori Shinohara ◽  
...  

2014 ◽  
Vol 35 (3) ◽  
pp. 1126-1142 ◽  
Author(s):  
Ning Han ◽  
Huaqiang Du ◽  
Guomo Zhou ◽  
Xiaoyan Sun ◽  
Hongli Ge ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Li ◽  
Changhui Peng ◽  
Junbo Zhang ◽  
Yongfu Li ◽  
Xinzhang Song

AbstractForest soils play an important role in controlling global warming by reducing atmospheric methane (CH4) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH4 cycle or CH4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha−1 yr−1) on soil CH4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo (Phyllostachys edulis) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.


Sign in / Sign up

Export Citation Format

Share Document