forest mapping
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 30)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 11 (23) ◽  
pp. 11348
Author(s):  
Huaqiao Xing ◽  
Jingge Niu ◽  
Chang Liu ◽  
Bingyao Chen ◽  
Shiyong Yang ◽  
...  

Accurate and up-to-date forest monitoring plays a significant role in the country’s society and economy. Many open-access global forest datasets can be used to analyze the forest profile of countries around the world. However, discrepancies exist among these forest datasets due to their specific classification systems, methodologies, and remote sensing data sources, which makes end-users difficult to select an appropriate dataset in different regions. This study aims to explore the accuracy, consistency, and discrepancies of eight widely-used forest datasets in Myanmar, including Hansen2010, CCI-LC2015, FROM-GLC2015/2017, FROM-GLC10, GLC-FCS2015/2020, and GlobeLand30-2020. Firstly, accuracy assessment is conducted by using 934 forest and non-forest samples with four different years. Then, spatial consistency of these eight datasets is compared in area and spatial distribution. Finally, the factors influencing the spatial consistency are analyzed from the aspects of terrain and climate. The results indicate that in Myanmar the forest area derived from GlobeLand30 has the best accuracy, followed by FROM-GLC10 and FROM-GLC2017. The eight datasets differ in spatial detail, with the mountains of northern Myanmar having the highest consistency and the seaward areas of southwestern Myanmar having the highest inconsistency, such as Rakhine and the Ayeyarwady. In addition, it is found that the spatial consistency of the eight datasets is closely related to the terrain and climate. The highest consistency among the eight datasets is found in the range of 1000–3500 m above sea level and 26°–35° slope. In the subtropical highland climate (Cwb) zone, the percentage of complete consistency among the eight datasets is as high as 60.62%, which is the highest consistency among the six climatic zones in Myanmar. Therefore, forest mapping in Myanmar should devote more effort to low topography, seaward areas such as border states like Rakhine, Irrawaddy, Yangon, and Mon. This is because these areas have complex and diverse landscape types and are prone to confusion between forest types (e.g., grassland, shrub, and cropland). The approach can also be applied to other countries, which will help scholars to select the most suitable forest datasets in different regions for analysis, thus providing recommendations for relevant forest policies and planning in different countries.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1374
Author(s):  
Kamiel Verhelst ◽  
Yaqing Gou ◽  
Martin Herold ◽  
Johannes Reiche

Remote Sensing-based global Forest/Non-Forest (FNF) masks have shown large inaccuracies in tropical wetland areas. This limits their applications for deforestation monitoring and alerting in which they are used as a baseline for mapping new deforestation. In radar-based deforestation monitoring, for example, moisture dynamics in unmasked non-forest areas can lead to false detections. We combined a GEDI Forest Height product and Sentinel-1 radar data to improve FNF masks in wetland areas in Gabon using a Random Forest model. The GEDI Forest Height, together with texture metrics derived from Sentinel-1 mean backscatter values, were the most important contributors to the classification. Quantitatively, our mask outperformed existing global FNF masks by increasing the Producer’s Accuracy for the non-forest class by 14%. The GEDI Forest Height product by itself also showed high accuracies but contained Landsat artifacts. Qualitatively, our model was best able to cleanly uncover non-forest areas and mitigate the impact of Landsat artifacts in the GEDI Forest Height product. An advantage of the methodology presented here is that it can be adapted for different application needs by varying the probability threshold of the Random Forest output. This study stresses that, in any application of the suggested methodology, it is important to consider the UA/PA trade-off and the effect it has on the classification. The targeted improvements for wetland forest mapping presented in this paper can help raise the accuracy of tropical deforestation monitoring.


2021 ◽  
Author(s):  
Nouman Ahmed ◽  
Sudipan Saha ◽  
Muhammad Shahzad ◽  
Muhammad Moazam Fraz ◽  
Xiao Xiang Zhu

2021 ◽  
Vol 13 (19) ◽  
pp. 3830
Author(s):  
Genping Zhao ◽  
Arturo Sanchez-Azofeifa ◽  
Kati Laakso ◽  
Chuanliang Sun ◽  
Lunke Fei

Accurate estimation of the degree of regeneration in tropical dry forest (TDF) is critical for conservation policymaking and evaluation. Hyperspectral remote sensing and light detection and ranging (LiDAR) have been used to characterize the deterministic successional stages in a TDF. These successional stages, classified as early, intermediate, and late, are considered a proxy for mapping the age since the abandonment of a given forest area. Expanding on the need for more accurate successional forest mapping, our study considers the age attributes of a TDF study area as a continuous expression of relative attribute scores/levels that vary along the process of ecological succession. Specifically, two remote-sensing data sets: HyMap (hyperspectral) and LVIS (waveform LiDAR), were acquired at the Santa Rosa National Park Environmental Monitoring Super Site (SRNP-EMSS) in Costa Rica, were used to generate age-attribute metrics. These metrics were then used as entry-level variables on a randomized nonlinear archetypal analysis (RNAA) model to select the most informative metrics from both data sets. Next, a relative attribute learning (RAL) algorithm was adapted for both independent and fused metrics to comparatively learn the relative attribute levels of the forest ages of the study area. In this study, four HyMap indices and five LVIS metrics were found to have the potential to map the forest ages of the study area, and compared with these results, a significant improvement was found through the fusion of the metrics on the accuracy of the generated forest age maps. By linking the age group mapping and the relative attribute mapping results, a dynamic gradient of the age-attribute transition patterns emerged.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1211
Author(s):  
Adeel Ahmad ◽  
Sajid Rashid Ahmad ◽  
Hammad Gilani ◽  
Aqil Tariq ◽  
Na Zhao ◽  
...  

This paper synthesizes research studies on spatial forest assessment and mapping using remote sensing data and techniques in Pakistan. The synthesis states that 73 peer-reviewed research articles were published in the past 28 years (1993–2021). Out of all studies, three were conducted in Azad Jammu & Kashmir, one in Balochistan, three in Gilgit-Baltistan, twelve in Islamabad Capital Territory, thirty-one in Khyber Pakhtunkhwa, six in Punjab, ten in Sindh, and the remaining seven studies were conducted on national/regional scales. This review discusses the remote sensing classification methods, algorithms, published papers' citations, limitations, and challenges of forest mapping in Pakistan. The literature review suggested that the supervised image classification method and maximum likelihood classifier were among the most frequently used image classification and classification algorithms. The review also compared studies before and after the 18th constitutional amendment in Pakistan. Very few studies were conducted before this constitutional amendment, while a steep increase was observed afterward. The image classification accuracies of published papers were also assessed on local, regional, and national scales. The spatial forest assessment and mapping in Pakistan were evaluated only once using active remote sensing data (i.e., SAR). Advanced satellite imageries, the latest tools, and techniques need to be incorporated for forest mapping in Pakistan to facilitate forest stakeholders in managing the forests and undertaking national projects like UN’s REDD+ effectively.


2021 ◽  
Author(s):  
S.A. Nitoslawski ◽  
K. Wong‐Stevens ◽  
J.W.N. Steenberg ◽  
K. Witherspoon ◽  
L. Nesbitt ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 148
Author(s):  
Elena Petrovna Yankovich ◽  
Ksenia Stanislavovna Yankovich ◽  
Nikolay Viktorovich Baranovskiy

2021 ◽  
Vol 13 (3) ◽  
pp. 337 ◽  
Author(s):  
Alena Dostálová ◽  
Mait Lang ◽  
Janis Ivanovs ◽  
Lars T. Waser ◽  
Wolfgang Wagner

The constellation of two Sentinel-1 satellites provides an unprecedented coverage of Synthetic Aperture Radar (SAR) data at high spatial (20 m) and temporal (2 to 6 days over Europe) resolution. The availability of dense time series enables the analysis of the SAR temporal signatures and exploitation of these signatures for classification purposes. Frequent backscatter observations allow derivation of temporally filtered time series that reinforce the effect of changes in vegetation phenology by limiting the influence of short-term changes related to environmental conditions. Recent studies have already shown the potential of multitemporal Sentinel-1 data for forest mapping, forest type classification (coniferous or broadleaved forest) as well as for derivation of phenological variables at local to national scales. In the present study, we tested the viability of a recently published multi-temporal SAR classification method for continental scale forest mapping by applying it over Europe and evaluating the derived forest type and tree cover density maps against the European-wide Copernicus High Resolution Layers (HRL) forest datasets and national-scale forest maps from twelve countries. The comparison with the Copernicus HRL datasets revealed high correspondence over the majority of the European continent with overall accuracies of 86.1% and 73.2% for the forest/non-forest and forest type maps, respectively, and a Pearson correlation coefficient of 0.83 for tree cover density map. Moreover, the evaluation of both datasets against the national forest maps showed that the obtained accuracies of Sentinel-1 forest maps are almost within range of the HRL datasets. The Sentinel-1 forest/non-forest and forest type maps obtained average overall accuracies of 88.2% and 82.7%, respectively, as compared to 90.0% and 87.2% obtained by the Copernicus HRL datasets. This result is especially promising due to the facts that these maps can be produced with a high degree of automation and that only a single year of Sentinel-1 data is required as opposed to the Copernicus HRL forest datasets that are updated every three years.


2021 ◽  
Vol 13 (2) ◽  
pp. 213
Author(s):  
Cheng Xing ◽  
Tao Zhang ◽  
Hongmiao Wang ◽  
Liang Zeng ◽  
Junjun Yin ◽  
...  

Vegetation height estimation plays a pivotal role in forest mapping, which significantly promotes the study of environment and climate. This paper develops a general forest structure model for vegetation height estimation using polarimetric interferometric synthetic aperture radar (PolInSAR) data. In simple terms, the temporal decorrelation factor of the random volume over ground model with volumetric temporal decorrelation (RVoG-vtd) is first modeled by random motions of forest scatterers to solve the problem of ambiguity. Then, a novel four-stage algorithm is proposed to improve accuracy in forest height estimation. In particular, to compensate for the temporal decorrelation mainly caused by changes between multiple observations, one procedure of temporal decorrelation adaptive estimation via Expectation-Maximum (EM) algorithm is added into the novel method. On the other hand, to extract the features of amplitude and phase more effectively, in the proposed method, we also convert Euclidean distance to a generalized distance for the first time. Assessments of different algorithms are given based on the repeat-pass PolInSAR data of Gabon Lope Park acquired in AfriSAR campaign of German Aerospace Center (DLR). The experimental results show that the proposed method presents a significant improvement of vegetation height estimation accuracy with a root mean square error (RMSE) of 6.23 m and a bias of 1.28 m against LiDAR heights, compared to the results of the three-stage method (RMSE: 8.69 m, bias: 4.81 m) and the previous four-stage method (RMSE: 7.72 m, bias: −2.87 m).


Author(s):  
Maryam Naghdizadegan Jahromi ◽  
Mojtaba Naghdyzadegan Jahromi ◽  
Hamid Reza Pourghasemi ◽  
Shahrokh Zand-Parsa ◽  
Sajad Jamshidi

Sign in / Sign up

Export Citation Format

Share Document