Application of Bifurcation Theory to Voltage Stability in Power System

2013 ◽  
Vol 811 ◽  
pp. 643-646
Author(s):  
Xue Song Zhou ◽  
Mo Chen ◽  
You Jie Ma

In order to study on the problem of voltage stability of power system, this paper describes the static bifurcation analysis and the dynamic bifurcation analysis in voltage stabilization analysis of power system and its relationship with the voltage stability,discusses the voltage instability caused by two main bifurcation formal definition, the occurrence of the conditions and the calculation of the bifurcation point, and points out advantages and disadvantages of various algorithms. Finally the paper looks forward to further study of the bifurcation theory in terms of voltage stability.

2019 ◽  
Vol 49 (4) ◽  
pp. 225-232
Author(s):  
Jaime Dwaigth Pinzon Casallas ◽  
D. G. Colomé

This paper presents a novel methodology to identify critical contingencies that produce short-term voltage stability problems (STVS). The proposed methodology classifies the state of the pow-er system for each contingency, assessing the voltage stability of the post-contingency dynamic response from the calculation of the maximal Lyapunov expo-nent (MLE) and dynamic voltage indices at each bus and the whole system. In order to determine the crit-ical contingencies, the values of the indices and the results of the classification of the post-contingency state are statistically analysed. The methodology is tested in the New England 39-bus system, obtaining satisfactory results in relation to the identification not only of the most critical contingencies but also of vulnerable buses to voltage instability. New contri-butions of this work are the contingency classifica-tion methodology, the algorithm for calculating dy-namic indices and the method of classification of the operating state as a function of the STVS problem magnitude.


Author(s):  
Sinan M ◽  
Sivakumar W M ◽  
Anguraja R

The purpose of this research is to find the loading limit of a power system before hitting voltage instability and to assess the margin to voltage instability of a system consisting of a wind farm. An index called Bus Apparent Power Difference Criterion (BSDC) is used to find maximum loadable point. The measure depends on the way that in the region of the voltage collapse no extra apparent power can be delivered to the affected bus. The analysis is performed combination of wind power injection at different wind speeds and line outages in the network. In the feasibility and siting studies of wind farms the steady state analysis with network contingencies give the utility or the developer a sense of network condition upon the injection of power in the network. However, the extent of voltage stability impacted due to load growth in the system is not assessed. The research paper makes way to assess the impact on voltage stability margin with obtaining the maximum loadable point of the system and assessing the best suited bus to integrate a wind farm into the system.


Author(s):  
Pavithren Pavithren ◽  
Raman Raghu Raman ◽  
Pratap Nair ◽  
K. Nithiyananthan

<p>The main objective of this research work is to analysis the voltage stability of the power system network and its improvement in the network.voltage stability of a power system. A system enters a state of voltage instability when a disturbance, increase in load demand, or change in system condition causes a progressive and an uncontrollable drop in voltage or voltage collapse. The continuing increase in demand for electric power has resulted in an increasingly complex, interconnected system, forced to operate closer to the limits of the stability. This has necessitated the implementation of techniques for analyzing and detecting voltage collapse in bus bar or lines prior to its occurrence. Simple Newton Raphson algorithm based voltage stability analysis has been carried out. Matlab based simulations for all the factors that causes voltage instability has been implemented and analyzed for an IEEE 30 bus system. The proposed model is able to identify the behavior of the power systems, network under various voltage stability conditions and its possibility of recovery/stability improvement of the power system network has been discussed.</p>


Author(s):  
Mohammed Amroune ◽  
Tarek Bouktir ◽  
Ismail Musirin

AbstractIn recent years, due to the economic and environmental issues, modern power systems often operate proximately to the technical restraints enlarging the probable level of instability risks. Hence, efficient methods for voltage instability prevention are of great importance to power system companies to avoid the risk of large blackouts. In this paper, an event-driven emergency demand response (EEDR) strategy based on whale optimization algorithm (WOA) is proposed to effectively improve system voltage stability. The main objective of the proposed EEDR approach is to maintain voltage stability margin (VSM) in an acceptable range during emergency situations by driving the operating condition of the power system away from the insecure points. The optimal locations and amounts of load reductions have been determined using WOA algorithm. To test the feasibility and the efficiency of the proposed method, simulation studies are carried out on the IEEE 14-bus and real Algerian 114-bus power systems.


2013 ◽  
Vol 339 ◽  
pp. 545-549
Author(s):  
Xue Song Zhou ◽  
Huan Liang ◽  
You Jie Ma

Power system voltage stability is one of research hotpots in the field of electric power engineering. Firstly, the application of bifurcation theory in power system analysis is introduced. Secondly, static index which is used frequently in power system analysis is given and the characteristics of every index are clarified in detail. Last, it introduces the analytical methods of dynamic voltage and makes prospect about the voltage stability analysis.


Sign in / Sign up

Export Citation Format

Share Document