Laser Tracking System Design Performance Test

2013 ◽  
Vol 823 ◽  
pp. 392-395
Author(s):  
Chun Yan Wang ◽  
Yi Bo Wang

To simulate the real field environment far field, to obtain the best performance of the laser measurements of the turntable tracking system to be developed, can be locked by means of the tracking of the target, the turntable adjusting the rotational angular velocity tracking system size and rotation means, so as to simulate different motion state space moving target effect on the laser irradiation to test the performance targets to achieve the targeting system performance evaluation.

2014 ◽  
Vol 704 ◽  
pp. 350-354
Author(s):  
Muhammad Ikram Mohd Rashid ◽  
Nik Fadhil bin Nik Mohammed ◽  
Suliana binti Ab Ghani ◽  
Noor Asiah Mohamad

The energy extracted from photovoltaic (PV) or solar thermal depends on solar insolation. For the extraction of maximum energy from the sun, the plane of the solar collector should always be normal to the incident radiation. Sun trackers move the solar collector to follow the sun trajectories and keep the orientation of the solar collector at an optimal tilt angle. Energy efficiency of solar PV or solar thermal can be substantially improved using solar tracking system. In this paper, an automatic solar tracking system has been designed and developed using DC motor on a mechanical structure with gear arrangement. The movements of two-axis solar trackers for the elevation and azimuth angles are programmed according to the mathematical calculation by using the Borland C++ Builder. Performance of the proposed system over the important parameter like solar radiation received on the collector, maximum hourly electrical power has been evaluated and compared with those for fixed tilt angle solar collector.


2012 ◽  
Vol 6 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Seiji Aoyagi ◽  
◽  
Masato Suzuki ◽  
Tomokazu Takahashi ◽  
Jun Fujioka ◽  
...  

Offline teaching based on high positioning accuracy of a robot arm is desired to take the place of manual teaching. In offline teaching, joint angles are calculated using a kinematic model of the robot arm. However, a nominal kinematic model does not consider the errors arising in manufacturing or assembly, not to mention the non-geometric errors arising in gear transmission, arm compliance, etc. Therefore, a method of precisely calibrating the parameters in a kinematic model is required. For this purpose, it is necessary to measure the three-dimensional (3-D) absolute position of the tip of a robot arm. In this paper, a laser tracking system is employed as the measurement apparatus. The geometric parameters in the robot kinematic model are calibrated by minimizing errors between the measured positions and the predicted ones based on the model. The residual errors caused by non-geometric parameters are further reduced by using neural networks, realizing high positioning accuracy of sub-millimeter order. To speed up the calibration process, a smaller number of measuring points is preferable. Optimal measuring points, which realize high positioning accuracy while remaining small in number, are selected using Genetic Algorithm (GA).


Author(s):  
Tianhao Yan ◽  
Mugurel Turos ◽  
Chelsea Bennett ◽  
John Garrity ◽  
Mihai Marasteanu

High field density helps in increasing the durability of asphalt pavements. In a current research effort, the University of Minnesota and the Minnesota Department of Transportation (MnDOT) have been working on designing asphalt mixtures with higher field densities. One critical issue is the determination of the Ndesign values for these mixtures. The physical meaning of Ndesign is discussed first. Instead of the traditional approach, in which Ndesign represents a measure of rutting resistance, Ndesign is interpreted as an indication of the compactability of mixtures. The field density data from some recent Minnesota pavement projects are analyzed. A clear negative correlation between Ndesign and field density level is identified, which confirms the significant effect of Ndesign on the compactability and consequently on the field density of mixtures. To achieve consistency between the laboratory and field compaction, it is proposed that Ndesign should be determined to reflect the real field compaction effort. A parameter called the equivalent number of gyrations to field compaction effort (Nequ) is proposed to quantify the field compaction effort, and the Nequ values for some recent Minnesota pavement projects are calculated. The results indicate that the field compaction effort for the current Minnesota projects evaluated corresponds to about 30 gyrations of gyratory compaction. The computed Nequ is then used as the Ndesign for a Superpave 5 mixture placed in a paving project, for which field density data and laboratory performance test results are obtained. The data analysis shows that both the field density and pavement performance of the Superpave 5 mixture are significantly improved compared with the traditional mixtures. The results indicate that Nequ provides a reasonable estimation of field compaction effort, and that Nequ can be used as the Ndesign for achieving higher field densities.


Author(s):  
Ki-Pyoung Sung ◽  
Hyung-Chul Lim ◽  
Jong-Uk Park ◽  
Man-Soo Choi ◽  
Sung-Yeol Yu ◽  
...  

Author(s):  
Omprakash Kaiwartya ◽  
Pawan Kumar Tiwari ◽  
Sushil Kumar ◽  
Mukesh Prasad

Vehicle Routing Problem (VRP), a well-known combinatorial optimization problem had been presented by Dantzing and Hamser in 1959. The problem has taken its inspiration from the transport field. In real field environment, a lot of variants of the problem exist that actually belongs to the class of NP-hard problem. Dynamic Vehicle routing problem (DVRP) is one of the variant of VRP that varies with respect to time. In DVRP, new customer orders appear over time and new route must be reconfigured at any instantaneous time. Although, some exact algorithms such as dynamic programming methods, branch and bound etc. can be applied to find the optimal route of a smaller size VRP. But, These Algorithms fail to give the solution of existed model of VRP in real field environment under given real time constraints. Courier services, dial a ride services and express mail delivery etc. are the few examples of real field environment problems that can be formulated in the form of DVRP. In this chapter, A novel variants of DVRP named as DVRP with geographic ranking (DVRP-GR) has been proposed. In DVRP-GR, geographical ranking, customer ranking, service time, expected reachability time, customer satisfaction level have been optimized. A solution of DVRP-GR using seed based particle swarm optimization (S-DVRS-PSO) has been also proposed. The simulations have been performed using customized simulator developed in C++ environment. The data sets used in the simulations are OMK-01, OMK-02 and OMK-03 generated in real vehicular environment. The solution of the proposed algorithm has been compared with the randomized solution technique. Analysis of the simulation results confirms the effectiveness of the proposed solution in terms of various parameters considered viz. number of vehicles, expected reachability time, profit and customer satisfaction.


Sign in / Sign up

Export Citation Format

Share Document