velocity tracking
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 53)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Andreyna Sárila Ramos Ferreira ◽  
Débora Debiaze De Paula ◽  
Paulo Jefferson Dias de Oliveira Evald ◽  
Rodrigo Zelir Azzolin

Robotics has been expanding over last decades, employed mainly to the activities that are most harmful to human beings. Considering that welding is one of the most risky activities in industries, studies and researches in the process automation are quite important. In this context, this work contributes to the control of the velocity tracking of the displacement of a linear welding robot. The mathematical modelling of the robot is presented, and the chosen control technique is Model Reference Control, which allows project controller based on the desired behaviour for the robot. To corroborate controller effectiveness, simulation and experimental results are presented and discussed, proving that proposed technique is adequate to control the robot velocity.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8161
Author(s):  
Xibao Xu ◽  
Yushen Chen ◽  
Chengchao Bai

Planetary soft landing has been studied extensively due to its promising application prospects. In this paper, a soft landing control algorithm based on deep reinforcement learning (DRL) with good convergence property is proposed. First, the soft landing problem of the powered descent phase is formulated and the theoretical basis of Reinforcement Learning (RL) used in this paper is introduced. Second, to make it easier to converge, a reward function is designed to include process rewards like velocity tracking reward, solving the problem of sparse reward. Then, by including the fuel consumption penalty and constraints violation penalty, the lander can learn to achieve velocity tracking goal while saving fuel and keeping attitude angle within safe ranges. Then, simulations of training are carried out under the frameworks of Deep deterministic policy gradient (DDPG), Twin Delayed DDPG (TD3), and Soft Actor Critic (SAC), respectively, which are of the classical RL frameworks, and all converged. Finally, the trained policy is deployed into velocity tracking and soft landing experiments, results of which demonstrate the validity of the algorithm proposed.


2021 ◽  
Vol 141 (12) ◽  
pp. 1492-1499
Author(s):  
Yukiya Natsu ◽  
Tomoki Hamagami ◽  
Masayasu Kanke ◽  
Kento Yoshida ◽  
Makoto Niwakawa

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7997
Author(s):  
Hamidreza Fahham ◽  
Abolfazl Zaraki ◽  
Gareth Tucker ◽  
Mark W. Spong

The problem of velocity tracking is considered essential in the consensus of multi-wheeled mobile robot systems to minimise the total operating time and enhance the system’s energy efficiency. This study presents a novel switched-system approach, consisting of bang-bang control and consensus formation algorithms, to address the problem of time-optimal velocity tracking of multiple wheeled mobile robots with nonholonomic constraints. This effort aims to achieve the desired velocity formation in the least time for any initial velocity conditions in a multiple mobile robot system. The main findings of this study are as follows: (i) by deriving the equation of motion along the specified path, the motor’s extremal conditions for a time-optimal trajectory are introduced; (ii) utilising a general consensus formation algorithm, the desired velocity formation is achieved; (iii) applying the Pontryagin Maximum Principle, the new switching formation matrix of weights is obtained. Using this new switching matrix of weights guarantees that at least one of the system’s motors, of either the followers or the leader, reaches its maximum or minimum value by using extremals, which enables the multi-robot system to reach the velocity formation in the least time. The proposed approach is verified in a theoretical analysis along with the numerical simulation process. The simulation results demonstrated that using the proposed switched system, the time-optimal consensus algorithm behaved very well in the networks with different numbers of robots and different topology conditions. The required time for the consensus formation is dramatically reduced, which is very promising. The findings of this work could be extended to and beneficial for any multi-wheeled mobile robot system.


Author(s):  
Andres G. Velasquez ◽  
Eddie Clemente ◽  
M. C. Rodriguez-Linan ◽  
Marlen Meza-Sanchez

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
He-Wei Zhao ◽  
Li-bin Yang

Purpose This paper aims to discuss the precise altitude and velocity tracking control of a hypersonic vehicle, a global adaptive neural backstepping controller was studied based on a disturbance observer (DOB). Design/methodology/approach The DOB combined with a radial basis function (RBF) neural network (NN) was used to estimate the disturbance terms that are generated by the flexible modes of the hypersonic vehicle system. A global adaptive neural method was introduced to approximate the unknown system dynamics, with robust control terms pulling the system transient states back into the neural approximation domain externally. Findings The globally uniformly ultimately bounded for all signals of a closed-loop system can be guaranteed by the proposed control algorithm. Additionally, the command filtered backstepping methods can avoid the explosion of the complexity problem caused by the backstepping design process. In addition, the effectiveness of the proposed controller can be verified by the simulation used in this study. Research limitations/implications Normally lateral dynamics issue should be discussed in the process of control system designed, the lateral dynamics are not included in the nonlinear dynamic model of hypersonic vehicle used in this paper, merely the longitudinal flight dynamics are discussed in this paper. Originality/value The flexible states in rigid modes are considered as the disturbance of the system, which is estimated by structuring DOB with NN approximations. The compensating tracking error and prediction error are used in the update law of RBF NN weight. The differential explosions complexity derived from the backstepping procedure is dealt with by using command filters.


2021 ◽  
Vol 68 (10) ◽  
pp. 4360-4370
Author(s):  
Yangyang Cui ◽  
Yongjian Yang ◽  
Yukai Zhu ◽  
Jianzhong Qiao ◽  
Lei Guo

Machines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 194
Author(s):  
Qiang Xin ◽  
Chongchong Wang ◽  
Chin-Yin Chen ◽  
Guilin Yang ◽  
Long Chen

The vibration caused by resonance modes frequently occurs during acceleration and deceleration of the modular joint integrated with flexible harmonic drive. The conventional equivalent rigid-body velocity method with observer can suppress the residual vibration induced by resonant frequency but has poor robustness to model uncertainties and external disturbances. Moreover, it cannot eliminate the torque ripple caused by the harmonic drive during low-speed uniform motion, reducing the velocity tracking accuracy. Hence, a velocity controller with a rigid-body state observer and an adjustable damper is designed to improve the robust performance and velocity tracking accuracy. The designed rigid-body state observer allows a higher gain so that the bandwidth of the observer can increase, and the equivalent rigid-body velocity can be acquired more accurately. Notably, the high gain observer reduces the sensitivity to model uncertainties and exotic disturbances, especially near the resonant frequency. In addition, the observer combined with an adjustable damper can suppress the residual vibration and torque ripple simultaneously. The proposed method is compared experimentally with a PI method and two other rigid-body velocity methods, such as the conventional equivalent rigid-body observer method and the self-resonance cancellation method, to verify its advantages.


Sign in / Sign up

Export Citation Format

Share Document