Fatigue Crack Growth Rate in Laser-Welded Web Core Sandwich Panels - Fatigue Crack Propagation in Welded Base Metal

2014 ◽  
Vol 891-892 ◽  
pp. 1212-1216
Author(s):  
Anghel Cernescu ◽  
Heikki Remes ◽  
Pauli Lehto ◽  
Jani Romanoff

The all-metal web-core sandwich structure consists of two face plates stiffened by one-directional system of web plates. These web core sandwich structures are used in many structural applications such as ship hulls, offshore platforms, bridge decks, and industrial platforms. However, the stress variation caused by the service loadings can be a determinant factor for crack initiation and growth until early failure of the entire structure. This paper presents an experimental study on fatigue crack growth rate in base material from a face plate after rolling and welding. The study is focused on the analysis of the stress ratio and crack closure effect on the fatigue crack growth rate in two directions. There is a significant stress ratio effect on fatigue crack growth rate, much more pronounced in the case of crack propagation in the longitudinal direction than in the transverse propagation. For all tests, the crack closure effect is more pronounced at low stress intensity factor range (in the threshold domain).

2014 ◽  
Vol 1004-1005 ◽  
pp. 142-147
Author(s):  
Ming Liu ◽  
Kun Zhang ◽  
Sheng Long Dai ◽  
Guo Ai Li ◽  
Min Hao ◽  
...  

The fatigue crack propagation behaviors of an Al-Cu-Mg alloy are investigated in different environments and with varying stress ratios. Fatigue experiments are carried out via a fatigue crack growth rate test in laboratory air, a 3.5% (mass fraction) NaCl solution and a tank seeper. The results show that a corrosion environment has an obvious influence on the fatigue crack growth rate, and the degrees of influence of the two different corrosive environments are basically identical. When the stress ratio is R = 0.5 and 0.06 with a decrease of the stress intensity factor, the difference in the crack propagation rates for the corrosion and air environments gradually increases. However, the corrosion acceleration in each stage of crack propagation is obvious while R=−1.


2000 ◽  
Vol 123 (2) ◽  
pp. 166-172 ◽  
Author(s):  
M. Itatani ◽  
M. Asano ◽  
M. Kikuchi ◽  
S. Suzuki ◽  
K. Iida,

Fatigue crack growth data obtained in the simulated BWR water environment were analyzed to establish a formula for reference fatigue crack growth rate (FCGR) of austenitic stainless steels in BWR water. The effects of material, mechanical and environmental factors were taken into the reference curve, which was expressed as: da/dN=8.17×10−12s˙Tr0.5s˙ΔK3.0/1−R2.121≦ΔK≦50 MPam where da/dN is fatigue crack growth rate in m/cycle, Tr is load rising time in seconds, ΔK is range (double amplitude) of K–value in MPam, and R is stress ratio. Tr=1 s if Tr<1 s, and Tr=1000 s if Tr cannot be defined. ΔK=Kmax−Kmin if R≧0.ΔK=Kmax if R<0.R=Kmin/Kmax. The proposed formula provides conservative FCGR at low stress ratio. Although only a few data show higher FCGR than that by proposed formula at high R, these data are located in a wide scatter range of FCGR and are regarded to be invalid. The proposed formula is going to be introduced in the Japanese Plant Operation and Maintenance Standard.


Sign in / Sign up

Export Citation Format

Share Document