tempered steel
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 44)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
G. Sahoo ◽  
P. Kumar ◽  
K. Nageswaran ◽  
K. K. Singh ◽  
V. Kumar ◽  
...  

Author(s):  
Kristin R. Carpenter ◽  
Pragathi Dissanayaka ◽  
Zoran Sterjovski ◽  
Huijun Li ◽  
Joe Donato ◽  
...  

2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Sunčana Smokvina Hanza ◽  
Lovro Štic ◽  
Lovro Liverić ◽  
Vedrana Špada

Low-alloy 42CrMo4 steel (AISI 4140) is a medium carbon steel, commonly used as a quenched and tempered steel. Because of its good mechanical properties, high tensile strength and toughness, 42CrMo4 is one of the widely used and investigated steels. In order to increase ductility even more, in addition to standard quenching and tempering, steel is often hardened by double quenching and tempering and austempering. The aim of this paper was to investigate the corrosion behaviour of 42CrMo4 steel after quenching and tempering, double quenching and tempering and austempering. For this purpose, microstructural characterization and electrochemical investigation after different hardening processes were performed. Microstructure of specimens was observed using optical microscopy and scanning electron microscopy. Open circuit potential and potentiodynamic polarization measurements of tempered specimens were carried out using computer-controlled potentiostat with three electrode set-up in 0.6 M NaCl naturally aerated solution. It was concluded that applied heat treatment processes increase the corrosion resistance of 42CrMo4 steel in comparison to normalized steel. In comparison to quenched and tempered steel, double quenching and tempering, as well as austempering, do not significantly change corrosion resistance of steel.


Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


2021 ◽  
Author(s):  
Tatiane Augusta dos Santos ◽  
Marilia Lima Silva ◽  
Dilson Silva dos Santos ◽  
Vicente T. Buono

Sign in / Sign up

Export Citation Format

Share Document