Concentration Distribution in the Wake of a Plane Surface Buried in a Porous Media in Alignment with the Flow Direction

2009 ◽  
Vol 283-286 ◽  
pp. 553-558
Author(s):  
João M.P.Q. Delgado ◽  
M. Vázquez da Silva

The present work describes the mass transfer process between a moving fluid and a slightly soluble flat surface buried in a packed bed of small inert particles with uniform voidage, by both advection and diffusion. Numerical solutions of the differential equation describing solute mass conservation were undertaken to obtain the concentration profiles, for each concentration level, the width and downstream length of the corresponding contour surface and the mass transfer flux was integrated to give the Sherwood number as a function of Peclet number. A mathematical expression that relates the dependence with the Peclet number is proposed to describe the approximate size of the diffusion wake downstream of the reactive solid mass.

2010 ◽  
Vol 297-301 ◽  
pp. 1238-1243
Author(s):  
João M.P.Q. Delgado ◽  
M. Vázquez da Silva

The present work describes the mass transfer process between a moving fluid and a slightly soluble flat surface buried in a packed bed of small inert particles with uniform voidage, by both advection and diffusion/dispersion. Numerical solutions of the differential equations describing solute mass conservation were undertaken to obtain the concentration profiles, for each concentration level. A simple mathematical expression that relates the dependence between concentration and axial distance is proposed to describe the approximate size of the diffusion wake downstream of the reactive solid mass.


2008 ◽  
Vol 273-276 ◽  
pp. 789-795
Author(s):  
João M.P.Q. Delgado

The present work describes the mass transfer process between a moving fluid and a slightly soluble plane surface buried in a packed bed, in alignment with the direction of flow. The bed of inert particles is taken to have uniform voidage. The elliptic equation resulting from a differential mass balance was solved numerically over a wide range of the relevant parameters and the resulting values of Sherwood number are seemed to depend only of the Peclet number. Experiments measurements of mass transfer in water were performed on the dissolution of plane surfaces of 2-naphthol and benzoic acid at temperatures that differ significantly from ambient value. The soluble plane surfaces used in the experiments were made of either 2-naphthol or benzoic acid and the range of temperatures covered were 278 to 368 K, for the dissolution of 2-naphthol, and 278 to 338 K, for benzoic acid in water. The results illustrate a simple and accurate method for the measurement of the coefficient of molecular diffusion of slightly soluble solutes.


Author(s):  
Qing-Qing Duan ◽  
Zhi-Guo Yuan ◽  
You-Zhi Liu ◽  
Shan-Shan Duan ◽  
Xi-Fan Duan

2016 ◽  
Vol 294 ◽  
pp. 111-121 ◽  
Author(s):  
Yucheng Yang ◽  
Yang Xiang ◽  
Guangwen Chu ◽  
Haikui Zou ◽  
Baochang Sun ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 110
Author(s):  
Gbeminiyi Sobamowo ◽  

This paper focuses on finite element analysis of the thermal behaviour of a moving porous fin with temperature-variant thermal conductivity and internal heat generation. The numerical solutions are used to investigate the effects of Peclet number, Hartmann number, porous and convective parameters on the temperature distribution, heat transfer and efficiency of the moving fin. The results show that when the convective and porous parameters increase, the adimensional fin temperature decreases. However, the value of the fin temperature is amplified as the value Peclet number is enlarged. Also, an increase in the thermal conductivity and the internal heat generation cause the fin temperature to fall and the rate of heat transfer from the fin to decrease. Therefore, the operational parameters of the fin must be carefully selected to avoid thermal instability in the fin.


Author(s):  
Ali Beskok

A continuous microfluidic mixer concept is developed by superposition of time-periodic electroosmotic flow on zeta potential patterned surfaces and pressure driven flow. Finite time Lyapunov exponents and filament stretching are utilized to quantify the chaotic strength, and to identify the chaotic and regular zones in the mixer at various operation conditions. Numerical solutions of the species transport equation are performed as a function of the Peclet number (Pe) at fixed kinematic conditions. Mixing efficiency is quantified using mixing index that is based on standard deviation of the scalar species distribution. The mixing length (lm) is characterized as a function of the Peclet number, and lm ∝ ln (Pe) scaling is observed under locally-optimum stirring conditions.


1977 ◽  
Vol 12 (2) ◽  
pp. 218-226 ◽  
Author(s):  
Yu. P. Gupalo ◽  
A. D. Polyanin ◽  
Yu. S. Ryazantsev

Sign in / Sign up

Export Citation Format

Share Document