wake region
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 66)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 3 (1) ◽  
pp. 4
Author(s):  
Anthony P. Rasca ◽  
Shahab Fatemi ◽  
William M. Farrell

Abstract In the solar wind, a low-density wake region forms downstream of the nightside lunar surface. In this study, we use a series of 3D hybrid particle-in-cell simulations to model the response of the lunar wake to a passing coronal mass ejection (CME). Average plasma parameters are derived from the Wind spacecraft located at 1 au during three distinct phases of a passing halo (Earth-directed) CME on 2015 June 22. Each set of plasma parameters, representing the shock/plasma sheath, a magnetic cloud, and plasma conditions we call the mid-CME phase, are used as the time-static upstream boundary conditions for three separate simulations. These simulation results are then compared with results that use nominal solar wind conditions. Results show a shortened plasma void compared to nominal conditions and a distinctive rarefaction cone originating from the terminator during the CME’s plasma sheath phase, while a highly elongated plasma void reforms during the magnetic cloud and mid-CME phases. Developments of electric and magnetic field intensification are also observed during the plasma sheath phase along the central wake, while electrostatic turbulence dominates along the plasma void boundaries and 2–3 lunar radii R M downstream in the central wake during the magnetic cloud and mid-CME phases. The simulations demonstrate that the lunar wake responds in a dynamic way with the changes in the upstream solar wind during a CME.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 453
Author(s):  
Kalpana Devi ◽  
Prashanth Reddy Hanmaiahgari ◽  
Ram Balachandar ◽  
Jaan H. Pu

This research article analyzed the self-preserving behaviour of wall-wake region of a circular pipe mounted horizontally over a flat rigid sand bed in a shallow flow in terms of mean velocity, RSS, and turbulence intensities. The study aims to investigate self-preservation using appropriate length and velocity scales.in addition to that wall-normal distributions of the third-order correlations along the streamwise direction in the wake region are analyzed. An ADV probe was used to record the three-dimensional instantaneous velocities for four different hydraulic and physical conditions corresponding to four cylinder Reynolds numbers. The results revealed that the streamwise velocity deficits, RSS deficits, and turbulence intensities deficits distributions displayed good collapse on a narrow band when they were non-dimensionalized by their respective maximum deficits. The wall-normal distance was non-dimensionalized by the half velocity profile width for velocity distributions, while the half RSS profile width was used in the case of the RSS deficits and turbulence intensities deficits distributions. The results indicate the self-preserving nature of streamwise velocity, RSS, and turbulence intensities in the wall-wake region of the pipe. The third-order correlations distributions indicate that sweep is the dominant bursting event in the near-bed zone. At the same time, ejection is the dominant bursting event in the region above the cylinder height.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1646
Author(s):  
Lu Wang ◽  
Jing Liu ◽  
Cunyan Jiang ◽  
Biao Li ◽  
Di Song ◽  
...  

Passages between buildings comprise the airflow path through the buildings, and the wind passage is often studied in terms of two buildings located parallel or at a certain angle. From the perspective of urban areas, the wind passage can be considered the series connection of all local wind passages between each row of buildings. Whether the central axis of each local wind passage is collinear or not, the wind passages of the building array can be summarized as distorted and streamlined types. Large-eddy simulations (LESs) are employed to assess the impacts of the above two wind passage types on the airflow and drag characteristics. The mean, unsteady flow fields and the drag distributions are discussed to assess the effects of wind passages types. Span-wise airflow was found in the wake region in the case of distorted wind passages (DWP), whereas the recirculating vortices dominated the wake region for the case of streamlined wind passages (SWP). Span-wise airflow enhanced the mean stream-wise velocity U and span-wise velocity U in the wake region, decreased U in the wind passage region, and increased dispersive stress 〈V˜2〉 and 〈U˜2〉 within the urban canopy and the peak Reynolds stress above the urban canopy. Further, it strengthened the individual drag forces of buildings and the fluctuations of span-wise and stream-wise individual drag forces. The air of DWP penetrated deeper than SWP. These findings provide theory and data support for better design of wind passages between buildings and may serve as a foundation for urban design and planning.


Author(s):  
Manas Metar

Abstract: Spoilers have been there in practice since years for the purpose of improving aerodynamics of a car. The pressure drag created at the end of the vehicle, referred to as wake region affects handling of the vehicle. This could be hazardous for the cars at high speeds. By adding a spoiler to the rear of the car reduces that pressure drag and the enhanced downforce helps in better traction. The paper presents aerodynamic analysis of a spoiler through Computational Fluid Dynamics analysis. The spoiler is designed using Onshape software and analyzed through SIMSCALE software. The simulation is carried out by changing angles of attack and velocities. The simulation results of downforce and drag are compared on the basis of analytical method. Keywords: Designing a spoiler, Design and analysis of spoiler, Aerodynamics of spoiler, Aerodynamic analysis of spoiler, Computational fluid dynamics, CFD analysis, CFD analysis of spoiler, Spoiler at variable angles, Types of spoilers, Analytical aerodynamic analysis.


2021 ◽  
pp. 1-13
Author(s):  
Khaoula Qaissi ◽  
Omer A Elsayed ◽  
Mustapha Faqir ◽  
Elhachmi Essadiqi

Abstract A wind turbine blade has the particularity of containing twisted and tapered thick airfoils. The challenge with this configuration is the highly separated flow in the region of high twist. This research presents a numerical investigation of the effectiveness of a Vortex Trapping Cavity (VTC) on the aerodynamics of the National renewable Energy laboratory (NREL) Phase VI wind turbine. First, simulations are conducted on the S809 profile to study the fluid flow compared to the airfoil with the redesigned VTC. Secondly, the blade is simulated with and without VTC to assess its effect on the torque and the flow patterns. The results show that for high angles of incidence at Rec=106, the lift coefficient increases by 10% and the wake region appears smaller for the case with VTC. For wind speeds larger than 10 m/s, the VTC improves the torque by 3.9%. This is due to the separation that takes place in the vicinity of the VTC and leads to trapping early separation eddies inside the cell. These eddies roll up forming a coherent laminar vortex structure, which in turn sheds periodically out of the cell. This phenomenon favourably reshapes excessive flow separation, reenergizes the boundary layer and globally improves blade torque.


2021 ◽  
Author(s):  
Lei Wang ◽  
Can Huang ◽  
Yasong Ge ◽  
A. M. Du ◽  
Rongsheng Wang ◽  
...  

Abstract How ion escape from the near-Mars space is one of the biggest puzzles for understanding the atmospheric evolution of Mars. Ions in the plasma wake region continuously escape from the unmagnetized planet. Although the average ion escape rate in the wake region is relatively low, observations also have revealed the presence of events that contribute bursty and enhanced ion escape fluxes. Boundary instabilities and magnetic reconnection are suggested to be the candidate mechanisms. However, there is a lack of evaluation of ion escape caused by reconnection and comparison of the two mechanisms under a similar plasma environment. Here, we show an exciting reconnection event in the Martian wake. Two types of flux ropes are observed during the event. One was generated by reconnection, while others were produced by dayside boundary instability and convected to tail. The escape rate of oxygen ions in the reconnection region was estimated to be about 53–72% of the total tailward escape. Furthermore, the escape flux in the flux rope produced by reconnection was over twice that caused by dayside instabilities.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 286
Author(s):  
Shaurya Shrivastava ◽  
Theresa Saxton-Fox

The preferential organisation of coherent vortices in a turbulent boundary layer in relation to local large-scale streamwise velocity features was investigated. Coherent vortices were identified in the wake region using the Triple Decomposition Method (originally proposed by Kolář) from 2D particle image velocimetry (PIV) data of a canonical turbulent boundary layer. Two different approaches, based on conditional averaging and quantitative statistical analysis, were used to analyze the data. The large-scale streamwise velocity field was first conditionally averaged on the height of the detected coherent vortices and a change in the sign of the average large scale streamwise fluctuating velocity was seen depending on the height of the vortex core. A correlation coefficient was then defined to quantify this relationship between the height of coherent vortices and local large-scale streamwise fluctuating velocity. Both of these results indicated a strong negative correlation in the wake region of the boundary layer between vortex height and large-scale velocity. The relationship between vortex height and full large-scale velocity isocontours was also studied and a conceptual model based on the findings of the study was proposed. The results served to relate the hairpin vortex model of Adrian et al. to the scale interaction results reported by Mathis et al., and Chung and McKeon.


2021 ◽  
Author(s):  
Sedem Kumahor ◽  
Samuel Addai ◽  
Mark F. Tachie

Abstract The interactions between the separated shear layer and the near wake region of rectangular cylinders of varying streamwise extents in a uniform flow are investigated using time resolved particle image velocimetry. The streamwise aspect ratios (AR) tested were 1 and 5, and the Reynolds number based on the oncoming flow velocity and cylinder height is 16200. The effects of varying AR on the mean flow, turbulent kinetic energy and Reynolds shear stresses are studied. Furthermore, the unsteady characteristics of the separation bubbles are examined in terms of frequency spectra analysis. The mean flow topology shows flow separation at the leading edge is not affected by the streamwise aspect ratios. However, the primary, secondary and wake vortexes show significant differences. Mean flow reattaches over the cylinder at 4.30 cylinder heights in the AR5 case while there is no mean reattachment in the AR1 case. The magnitudes of turbulent kinetic energy and Reynolds shear stress in the wake region are an order of magnitude higher in AR1 compared to AR5. Depending on the streamwise location, the vortex shedding motions in the near wake region reflect the dominant and second harmonic of the shear layer shedding frequency measured near the leading edge.


2021 ◽  
Vol 8 (8) ◽  
pp. 202172
Author(s):  
You-Jun Lin ◽  
Sheng-Kai Chang ◽  
Yu-Hsiang Lai ◽  
Jing-Tang Yang

Unlike other insects, a butterfly uses a small amplitude of the wing-pitch motion for flight. From an analysis of the dynamics of real flying butterflies, we show that the restrained amplitude of the wing-pitch motion enhances the wake-capture effect so as to enhance forward propulsion. A numerical simulation refined with experimental data shows that, for a small amplitude of the wing-pitch motion, the shed vortex generated in the downstroke induces air in the wake region to flow towards the wings. This condition enables a butterfly to capture an induced flow and to acquire an additional forward propulsion, which accounts for more than 47% of the thrust generation. When the amplitude of the wing-pitch motion exceeds 45°, the flow induced by the shed vortex drifts away from the wings; it attenuates the wake-capture effect and causes the butterfly to lose a part of its forward propulsion. Our results provide one essential aerodynamic feature for a butterfly to adopt a small amplitude of the wing-pitch motion to enhance the wake-capture effect and forward propulsion. This work clarifies the variation of the flow field correlated with the wing-pitch motion, which is useful in the design of wing kinematics of a micro-aerial vehicle.


Sign in / Sign up

Export Citation Format

Share Document