Finite Element Simulation of Martensitic Transformation in Single-Crystal TRIP Steel Based on Crystal Plasticity Theory with Cellular Automata Approach

2004 ◽  
Vol 274-276 ◽  
pp. 679-684 ◽  
Author(s):  
Takeshi Iwamoto ◽  
Toshio Tsuta
2008 ◽  
Vol 22 (31n32) ◽  
pp. 5985-5990 ◽  
Author(s):  
TAKESHI IWAMOTO ◽  
TOSHIYUKI SAWA ◽  
MOHAMMED CHERKAOUI

Due to strain-induced martensitic transformation (SIMT), the strength, ductility and toughness of TRIP steel are enhanced. The impact deformation behavior of TRIP steel is very important because it is investigated to apply it for the shock absorption member in automobile industries. However, its behavior is still unclear since it is quite difficult to capture the transformation behavior inside the materials. There are some opinions that the deformation characteristics are not mainly depending on the martensitic transformation due to heat generation by plastic work. Here, the impact compressive deformation behavior of TRIP steel is experimentally studied by Split Hopkinson Pressure Bar (SHPB) method at room temperature. In order to catch SIMT behavior during impact deformation, volume resistivity is measured and a transient temperature is captured by using a quite thin thermocouple. Then, a finite element simulation with the constitutive model for TRIP steel is performed. The finite element equation can be derived from the rate form of principle of virtual work based on the implicit time integration scheme. Finally, the results between the computation and experiment are compared to confirm the validity of computational model.


2020 ◽  
Vol 1001 ◽  
pp. 127-132
Author(s):  
Hong Yang Li ◽  
Song Yu ◽  
Jian Hui Li

Crystal plasticity deformation of aluminium plays an important role on the investigation of macro deformation. In this paper, to discuss the effect ot crystal plasticity on the aluminium material behavior, crystal plasticity theory and macro finite element was combined together. The basic theory of crystal plasticity and finite element was introduce and the simulation result of aluminium was given. The stress and strain distribution was discussed and the efficient of the method was shown. It is shown that the orientation of the material and other micro character of the materials all influence the plasticity behavior of the material greatly.


Sign in / Sign up

Export Citation Format

Share Document