Flexural Fatigue Behavior and Performance Characteristics of Polyacrylonitrile Fiber Reinforced Concrete

2006 ◽  
Vol 302-303 ◽  
pp. 572-583
Author(s):  
Zong Cai Deng ◽  
Hong Liang Deng ◽  
Jian Hui Li ◽  
Guo Dong Liu

This paper presents the results of an experimental investigation to determine the flexural fatigue strength and fatigue life of concrete beams reinforced with monofilament polyacrylonitrile fibers (PAN fiber for short). The performance of fresh concrete and the elastic and mechanical properties of hardened concrete are compared by samples with and without fibers. The toughness calculated according to both ASTM and JCI methods increased with the addition of fibers. The toughness indexes I5 was 3.8-4.2 times,I10 was 5.8—6.8 times that of the plain concrete. The equivalent strength was 0.63-0.87 MPa for PAN fiber reinforced concrete. When compared to plain concrete, the endurance limit of concrete beams only reinforced with PAN fiber is increased by 12 percent.

2010 ◽  
Vol 168-170 ◽  
pp. 2143-2149
Author(s):  
Wei Dong Zhuo ◽  
Shang Guan Ping ◽  
Yin Gu

The flexural fatigue performance of polyacrylonitrile (PAN) fiber reinforced concrete (PANFRC)was investigated by third-point loading tests. Based on the previous research work, optimum mixture proportions of PANFRC for highway overlays and bridge decks that satisfied both the minimum compressive and bending strengths, and showed excellent mechanical properties, were selected for fatigue testing. The experimental program included a total of 69 flexural specimens, 15 of which were plain concrete specimens, and the remaining 54 specimens were PANFRC specimens. Three mixes containing 0.0%, 0.1 %, and 0.15% of PAN fiber volume fractions were selected. For each mix, 4 different target load ranges were applied: 10–75%, 10–80%, 10–85%, and 10–90% of the ultimate flexural capacity, as obtained from the corresponding control static test. The bending fatigue life of PANFRC specimens under various stress ratios are proved to follow two-parameter Weibull distribution. Both a semi-logarithm and a double-logarithm P-S-N equations with various failure probabilities are derived from the experimental measurements. The denifition of the fatigue damage variable and damage evolution equation for PANFRC are furtherly proposed based on theory of continuum damage mechanics.


2010 ◽  
Vol 129-131 ◽  
pp. 1138-1141
Author(s):  
Meng Chen ◽  
Zhe An Lu ◽  
Zhi Gang Ren ◽  
You Zou

The flexural fatigue experiment of plain concrete (C) and Steel - Polypropylene Hybrid Fiber Reinforced Concrete (HFRC) is carried out to study the flexural fatigue performance and damage laws under cyclic loading. With the strain gauges pasted on the bottom of the specimens, the strain is collected by dynamic acquisition instrument.We obtain the fatigue life and the maximum strain - cyclic ratio ( ) curves by counting and analyzing the results of fatigue experiment ,which move forward a single step for analysis of fatigue damage laws of HFRC. The study would provide reference for flexural fatigue properties of HFRC.


Sign in / Sign up

Export Citation Format

Share Document