fatigue properties
Recently Published Documents


TOTAL DOCUMENTS

4818
(FIVE YEARS 808)

H-INDEX

69
(FIVE YEARS 11)

2022 ◽  
Vol 321 ◽  
pp. 126379
Author(s):  
Zhi Wang ◽  
Wenjing Qin ◽  
Yingnan Gao ◽  
Yuxiang Yang ◽  
Haopeng Lv ◽  
...  

2022 ◽  
Vol 281 ◽  
pp. 115046
Author(s):  
Antigoni Barouni ◽  
Colin Lupton ◽  
Chulin Jiang ◽  
Abu Saifullah ◽  
Khaled Giasin ◽  
...  

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 156
Author(s):  
Felipe Klein Fiorentin ◽  
Duarte Maciel ◽  
Jorge Gil ◽  
Miguel Figueiredo ◽  
Filippo Berto ◽  
...  

In recent years, the industrial application of Inconel 625 has grown significantly. This material is a nickel-base alloy, which is well known for its chemical resistance and mechanical properties, especially in high-temperature environments. The fatigue performance of parts produced via Metallic Additive Manufacturing (MAM) heavily rely on their manufacturing parameters. Therefore, it is important to characterize the properties of alloys produced by a given set of parameters. The present work proposes a methodology for characterization of the mechanical properties of MAM parts, including the material production parametrization by Laser Directed Energy Deposition (DED). The methodology consists of the testing of miniaturized specimens, after their production in DED, supported by a numerical model developed and validated by experimental data for stress calculation. An extensive mechanical characterization, with emphasis on high-cycle fatigue, of Inconel 625 produced via DED is herein discussed. The results obtained using miniaturized specimens were in good agreement with standard-sized specimens, therefore validating the applied methodology even in the case of some plastic effects. Regarding the high-cycle fatigue properties, the samples produced via DED presented good fatigue performance, comparable with other competing Metallic Additive Manufactured (MAMed) and conventionally manufactured materials.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 536
Author(s):  
Jernej Klemenc ◽  
Gorazd Fajdiga

When wood is used as a structural material, the fact that it is a highly inhomogeneous material, which significantly affects its static and fatigue properties, presents a major challenge to engineers. In this paper, a novel approach to modelling the fatigue-life properties of wood is presented. In the model, the common inverse-power-law relationship between the structural amplitude loads and the corresponding number of load cycles to failure is augmented with the influence of the wood’s mass density, the loading direction and the processing lot. The model is based on the two-parametric conditional Weibull’s probability density function with a constant shape parameter and a scale parameter that is a function of the previously mentioned parameters. The proposed approach was validated using the example of experimental static and fatigue-strength data from spruce beams. It turned out that the newly presented model is capable of adequately replicating the spruce’s S-N curves with a scatter, despite the relatively scarce amount of experimental data, which came from different production lots that were loaded in different directions and had a significant variation in density. Based on the experimental data, the statistical model predicts that the lower density wood has better fatigue strength.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Agus Sasmito ◽  
Mochammad Noer Ilman ◽  
Priyo Tri Iswanto ◽  
Rifai Muslih

In this work, rotary friction welding processes of dissimilar AA7075/AA5083 aluminium alloy rods with the diameter of 15 mm were performed at varying rotational speeds, typically 370 to 2500 rpm. The aim of this research is to improve mechanical properties, in particular, strength and fatigue performance of the weld joints. Several experiments including macro and microstructural examinations, Vickers microhardness measurements, tensile tests, fatigue tests and residual stress measurements were carried out. Results showed that at higher rotational speeds, typically 540 rpm or above, the dissimilar AA7075/AA5083 rotary friction weld joints revealed a static fracture in the AA5083 base metal side, indicating that the joint efficiency is more than 100%. It seemed that the best weld joint was achieved at the rotational speed of 1200 rpm, in which the friction heat was sufficient to form metallurgical bonding without causing excessive flash and burn-off. In such a condition, the fatigue strength of the weld joint was slightly higher than AA5083 base metal, but it was lower than AA7075 base metal. It was confirmed that the crack origin is observed at the interface followed by fatigue crack growth towards AA5083 side, and the growth of crack seemed to be controlled by microstructure and residual stress.


Sign in / Sign up

Export Citation Format

Share Document