polyacrylonitrile fiber
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 76)

H-INDEX

30
(FIVE YEARS 8)

Author(s):  
Wenjie Zheng ◽  
Qianwen Wu ◽  
Wusong Xu ◽  
Qizhong Xiong ◽  
Yusef Kianpoor Kalkhajeh ◽  
...  

The enrichment and separation of phosphorus-containing compounds from wastewater can prevent eutrophication and recycle non-renewable resource. Herein, we developed a recyclable functionalized polyacrylonitrile fiber (PANAF-Cl) capable of loading ionic liquid...


RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1051-1061
Author(s):  
Jian Xiao ◽  
Zhiying Wu ◽  
Kunlang Li ◽  
Zibo Zhao ◽  
Chunyan Liu

Ag(0) nanoparticles were immobilized on various pyridine salt, imidazole salt and quaternary ammonium functionalized polyacrylonitrile fibers (PANFs) to prepare Ag(0)-immobilized fiber catalysts.


Author(s):  
V. S. Soldatov ◽  
L. N. Shachenkova ◽  
E. G. Kasandrovich ◽  
P. V. Nesteronok

Curves of potentiometric titration of fully protonized fibrous ion exchangers with potassium hydroxide against the background of 1 M KCl in the presence of chlorides of Ni2+, Со2+, Сu2+ and Ca2+ were obtained. The ion exchangers were synthesized by modifying of industrial polyacrylonitrile fiber with diethylenetriamine and triethylenetetraamine and predominantly contained functional groups R-CO-NH- (CH2CH2NH)nH (n = 2 or 3) and a small amount of carboxyl groups. The sorption of Ni2+, Со2+, Сu2+ и Ca2+by ion exchangers was calculated from the data obtained depending on the pH of the medium. It was found that the investigated ion exchangers with high selectivity sorb heavy metal ions in a wide range of acidity of solutions (pH 2–9) due to the formation of metal-polymer complexes with polyamine functional groups. The maximum sorption capacity is 1.5–2.7 and 4–5 meq/g for ion exchangers with n = 2 and 3, respectively.


2021 ◽  
Vol 44 ◽  
pp. 103367
Author(s):  
Norma Gaibor ◽  
Dinis Leitão ◽  
Tiago Miranda ◽  
Nuno Cristelo ◽  
Eduardo N.B. Pereira ◽  
...  

2021 ◽  
Author(s):  
Yanyan Li ◽  
Lifan Shen ◽  
E.Y.B. Pun ◽  
Hai Lin

Abstract All-inorganic dual-phase CsPbBr3-Cs4PbBr6 quantum dots (CPB QDs)-based polyacrylonitrile (PAN) fiber synthesized by supersaturated recrystallization and electrospinning technique possesses characteristics of homogeneous morphology, high crystallinity and solution sensitivity. Under 365 nm laser excitation, CPB@PAN fiber exhibits surprising trace-recording capability attributing to the splash-enhanced fluorescence (FL) performance with a narrow-band emission at 477-515 nm. In the process of ethanol-anhydrous (EA) and water splashing, the CPB@PAN fiber presents conspicuous blue and green emission when contacting with EA and water, and maintains intense blue and green FL for more than 4 months. These experimental and theoretical findings provide a facile technology for the development of biological protection display, biotic detection and moisture-proof forewarning based on the trace-recording performance of CPB@PAN fiber.


2021 ◽  
Vol 8 ◽  
Author(s):  
Huachen Liu ◽  
Yikun Chen ◽  
Yongjie Xue

In this paper, recycled cellulose diacetate (rCDA) derived from cigarette butts was used as a fiber stabilizer to develop stone mastic asphalt (SMA) mixtures. The characterizations of rCDA were investigated by scanning electron microcopy (SEM), a Fourier transform infrared spectrometer (FTIR), and a thermogravimetric analyzer (TGA). Volumetric stability, temperature stability, moisture stability, and fatigue performance of SMA mixtures with rCDA were tested to obtain the pavement performance. Results showed that rCDA appeared to have a tough surface texture with a curly and corrugated structure, which facilitated the enhancement of the cohesion bond with the asphalt binder. TG-DTG indicated that the maximum weight loss (62.48%) obtained at temperatures ranging from 294.1°C to 376.0°C was due to decomposition and degradation of organic matters. When 0.4% rCDA was used in the asphalt mixture, the dynamic stability was 4,105 cycles/mm. The ultimate flexural strength and flexural stiffness modulus were 3,722 MPa and 9.7 MPa. It indicated that the temperature stability of 0.4% rCDA was superior to 0.3% polyacrylonitrile fiber (PAN), while inferior to 0.3% polyester (PET). The value of tensile strength ratio and residual Marshall stability were 80.2 and 75.3%, respectively. The fatigue life of 0.4% rCDA was technically like that of 0.3% PAN and 0.3% PET at lower stress levels. All results concluded that the optimum content of rCDA in asphalt mixtures was 0.4% by mass of the binder.


Author(s):  
Xiaoting Li ◽  
Jian Cao ◽  
Yali Zhao ◽  
Ning Ma ◽  
Minli Tao ◽  
...  

Author(s):  
V. S. Soldatov ◽  
T. A. Korshunova ◽  
E. G. Kosandrovich ◽  
P. V. Nesteronok

Titration curves of H-forms of the fibrous chelating sorbent with iminodiacetic groups based on industrial polyacrylonitrile fiber Nitron with potassium hydroxide in 1M KCl solution in the presence of Ni2+, Co2+, Cu2+ and Ca2+ chlorides were obtained. The method used made it possible to simultaneously measure the pH of the solution and the concentration of the divalent cation at each point of the titration curve. From these data, the dependences of their sorption values on the pH of the equilibrium solution were calculated. The curves of direct and back titration practically coincided in all cases. As the pH changed during titration, precipitation was observed at pH values of precipitation of the corresponding hydroxides. In this case, the increase in pH was suspended or greatly slowed down by adding alkali to the titration cell. The formation of a precipitate occurred mainly in a solution for Co2+ and Ni2+ (pH 8), when the ion exchanger was saturated with a metal ion. In the case of Cu2+ (precipitate formation pH 4), Cu2+ sorption occurs at both lower and higher pH due to ionization of carboxyl groups and partial dissolution of the precipitate. In all cases, the maximum sorption of Ni2+, Co2+, Cu2+, Ca2+ corresponded to the formation of sorption complexes of the R–N(CH2COO-)2Me2+ type.


Sign in / Sign up

Export Citation Format

Share Document