An Improved Ant Colony System Based on Negative Biased

2010 ◽  
Vol 439-440 ◽  
pp. 558-562
Author(s):  
Jin Qiu Yang ◽  
Jian Gang Yang ◽  
Gen Lang Chen

Ant System (AS) was the first Ant Colony Optimization (ACO) algorithm, which converged too slowly and consumed huge computation. Among the variants of AS, Ant Colony System (ACS) was one of the most successful algorithms. But ACS converged so rapidly that it always was in early stagnation. An improved Ant Colony System based on Negative Biased (NBACS) was introduced in the paper to overcome the early stagnation of the ACS. Experiments for Traveling Salesman Problem (TSP) showed that better solutions were obtained at the same time when the convergence rate accelerated more rapidly.

Author(s):  
Hoang Xuan Huan ◽  
Nguyen Linh-Trung ◽  
Do Duc Dong ◽  
Huu-Tue Huynh

Ant colony optimization (ACO) techniques are known to be efficient for combinatorial optimization. The traveling salesman problem (TSP) is the benchmark used for testing new combinatoric optimization algorithms. This paper revisits the application of ACO techniques to the TSP and discuss some general aspects of ACO that have been previously overlooked. In fact, it is observed that the solution length does not reflect exactly the quality of a particular edge belong to the solution, but it is only used for relatively evaluating whether the edge is good or bad in the process of reinforcement learning. Based on this observation, we propose two algorithms– Smoothed Max-Min Ant System and Three-Level Ant System– which not only can be easily implemented but also provide better performance, as compared to the well-known Max-Min Ant System. The performance is evaluated by numerical simulation using benchmark datasets.


2009 ◽  
Vol 626-627 ◽  
pp. 717-722 ◽  
Author(s):  
Hong Kui Feng ◽  
Jin Song Bao ◽  
Jin Ye

A lot of practical problem, such as the scheduling of jobs on multiple parallel production lines and the scheduling of multiple vehicles transporting goods in logistics, can be modeled as the multiple traveling salesman problem (MTSP). Due to the combinatorial complexity of the MTSP, it is necessary to use heuristics to solve the problem, and a discrete particle swarm optimization (DPSO) algorithm is employed in this paper. Particle swarm optimization (PSO) in the continuous space has obtained great success in resolving some minimization problems. But when applying PSO for the MTSP, a difficulty rises, which is to find a suitable mapping between sequence and continuous position of particles in particle swarm optimization. For overcoming this difficulty, PSO is combined with ant colony optimization (ACO), and the mapping between sequence and continuous position of particles is established. To verify the efficiency of the DPSO algorithm, it is used to solve the MTSP and its performance is compared with the ACO and some traditional DPSO algorithms. The computational results show that the proposed DPSO algorithm is efficient.


Sign in / Sign up

Export Citation Format

Share Document