Small Batch Laser Welding Using Light Fasteners and Laser Tack Welding

2011 ◽  
Vol 473 ◽  
pp. 267-272
Author(s):  
Milla Rasmus ◽  
Kari Mäntyjärvi ◽  
Jussi A. Karjalainen

Laser welding is known for its low heat input compared to arc welding methods. This could enable laser welding of sheet metals with lighter fastening solutions and less time-consuming tack welding alternatives. A feasibility study was carried out to study four different corner joint types for 2 mm thick cold rolledcold-rolled steel sheet by using filler-free laser welding. The aim of the research was to get more experimental knowledge about the laser welding of corner joints. Also possible benefits concerning faster manufacturing times and smaller costs by developing fastening applications for small batch laser welding was to be studied in practice. The 170 mm long joints were welded without air gap or pressing. All corner joint types proved to be weldable with a continuous wave Yb:YAG diode-pumped disk laser. It was also found during the With the experiment it was also found out that laser welding enables the use of light and inexpensive fasteners such as magnetic holders in steadinstead of traditional clamps and fixturing. With some joint types, the insufficient fastening power of magnetic fasteners against distortions was compensated by making a spot-like laser tack weld toat the end of the weld before welding the actual seam. This showed that it is possible to make precise and small tack welds with a laser and to use laser -tacking in sheet metal assembly.

1990 ◽  
Vol 26 (2) ◽  
pp. 317-322 ◽  
Author(s):  
P. Nachman ◽  
J. Munch ◽  
R. Yee

2011 ◽  
Vol 314-316 ◽  
pp. 1889-1894
Author(s):  
Yu Fan ◽  
Philip Shipway ◽  
Geoff Tansley ◽  
Zheng Chen

Distortion is one type of defect in the weld, which is troublesome for some reasons, especially in thin plate welding. Distortion was found in fibre laser welding processing for 0.7mm thickness Ti6Al4V plate. The purpose of this paper is to understand and evaluate the effect of distortion on stress level by FEA and tensile test. A group of 0.7mm Ti6Al4V plates welded using continuous wave fibre laser. FEA models were established for fibre laser welded Ti6Al4V in abaqus 6.7.


Sign in / Sign up

Export Citation Format

Share Document