Binary Resolution Matrix Based Incremental Attribute Reduction for Fault Diagnosis

2016 ◽  
Vol 693 ◽  
pp. 1346-1349
Author(s):  
Xiao Yu Chen ◽  
Wen Liao Du ◽  
An Sheng Li ◽  
Kun Li ◽  
Chun Hua Qian

Rough set theory is a useful tool for attribute reduction of fault diagnosis for rotating machinery, but cannot be efficiently used to sample increased areas. Aiming at the problem of incremental attribute reduction, a novel attribute reduction algorithm was put forward based on the binary resolution matrix for the two updating situations and the algorithm had a low space complex. Finally, with the fault diagnosis experiments of the bearing, the attribute reduction method was proved to be correct.

2012 ◽  
Vol 524-527 ◽  
pp. 819-823
Author(s):  
Xin Ping Su ◽  
Guang Kun Nie ◽  
Wei Xin Fan

An approach of forklift’s fault diagnostic knowledge acquisition and discrete date based on rough set theory was put forward, according to the rough set theory in fault diagnosis of fault tolerance, the use of rough set theory in fault knowledge attribute reduction and value reduction, as in incomplete fault information of forklift hydraulic system fault diagnosis provides a train of thought. The inferential strategy and process of fault diagnosis of hydraulic system for forklift were described. Examples show that the proposed approach is very effective.


2014 ◽  
Vol 533 ◽  
pp. 237-241
Author(s):  
Xiao Jing Liu ◽  
Wei Feng Du ◽  
Xiao Min

The measure of the significance of the attribute and attribute reduction is one of the core content of rough set theory. The classical rough set model based on equivalence relation, suitable for dealing with discrete-valued attributes. Fuzzy-rough set theory, integrating fuzzy set and rough set theory together, extending equivalence relation to fuzzy relation, can deal with fuzzy-valued attributes. By analyzing three problems of FRAR which is a fuzzy decision table attribute reduction algorithm having extensive use, this paper proposes a new reduction algorithm which has better overcome the problem, can handle larger fuzzy decision table. Experimental results show that our reduction algorithm is much quicker than the FRAR algorithm.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tengfei Zhang ◽  
Fumin Ma ◽  
Jie Cao ◽  
Chen Peng ◽  
Dong Yue

Parallel attribute reduction is one of the most important topics in current research on rough set theory. Although some parallel algorithms were well documented, most of them are still faced with some challenges for effectively dealing with the complex heterogeneous data including categorical and numerical attributes. Aiming at this problem, a novel attribute reduction algorithm based on neighborhood multigranulation rough sets was developed to process the massive heterogeneous data in the parallel way. The MapReduce-based parallelization method for attribute reduction was proposed in the framework of neighborhood multigranulation rough sets. To improve the reduction efficiency, the hashing Map/Reduce functions were designed to speed up the positive region calculation. Thereafter, a quick parallel attribute reduction algorithm using MapReduce was developed. The effectiveness and superiority of this parallel algorithm were demonstrated by theoretical analysis and comparison experiments.


Author(s):  
Yasuo Kudo ◽  
◽  
Tetsuya Murai ◽  

In this paper, we propose a parallel computation framework for a heuristic attribute reduction method. Attribute reduction is a key technique to use rough set theory as a tool in data mining. The authors have previously proposed a heuristic attribute reduction method to compute as many relative reducts as possible from a given dataset with numerous attributes. We parallelize our method by using open multiprocessing. We also evaluate the performance of a parallelized attribute reduction method by experiments.


Sign in / Sign up

Export Citation Format

Share Document