scholarly journals Parallel Attribute Reduction Algorithm for Complex Heterogeneous Data Using MapReduce

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tengfei Zhang ◽  
Fumin Ma ◽  
Jie Cao ◽  
Chen Peng ◽  
Dong Yue

Parallel attribute reduction is one of the most important topics in current research on rough set theory. Although some parallel algorithms were well documented, most of them are still faced with some challenges for effectively dealing with the complex heterogeneous data including categorical and numerical attributes. Aiming at this problem, a novel attribute reduction algorithm based on neighborhood multigranulation rough sets was developed to process the massive heterogeneous data in the parallel way. The MapReduce-based parallelization method for attribute reduction was proposed in the framework of neighborhood multigranulation rough sets. To improve the reduction efficiency, the hashing Map/Reduce functions were designed to speed up the positive region calculation. Thereafter, a quick parallel attribute reduction algorithm using MapReduce was developed. The effectiveness and superiority of this parallel algorithm were demonstrated by theoretical analysis and comparison experiments.

2014 ◽  
Vol 533 ◽  
pp. 237-241
Author(s):  
Xiao Jing Liu ◽  
Wei Feng Du ◽  
Xiao Min

The measure of the significance of the attribute and attribute reduction is one of the core content of rough set theory. The classical rough set model based on equivalence relation, suitable for dealing with discrete-valued attributes. Fuzzy-rough set theory, integrating fuzzy set and rough set theory together, extending equivalence relation to fuzzy relation, can deal with fuzzy-valued attributes. By analyzing three problems of FRAR which is a fuzzy decision table attribute reduction algorithm having extensive use, this paper proposes a new reduction algorithm which has better overcome the problem, can handle larger fuzzy decision table. Experimental results show that our reduction algorithm is much quicker than the FRAR algorithm.


Author(s):  
ZHIMING ZHANG ◽  
JINGFENG TIAN

Intuitionistic fuzzy (IF) rough sets are the generalization of traditional rough sets obtained by combining the IF set theory and the rough set theory. The existing research on IF rough sets mainly concentrates on the establishment of lower and upper approximation operators using constructive and axiomatic approaches. Less effort has been put on the attribute reduction of databases based on IF rough sets. This paper systematically studies attribute reduction based on IF rough sets. Firstly, attribute reduction with traditional rough sets and some concepts of IF rough sets are reviewed. Then, we introduce some concepts and theorems of attribute reduction with IF rough sets, and completely investigate the structure of attribute reduction. Employing the discernibility matrix approach, an algorithm to find all attribute reductions is also presented. Finally, an example is proposed to illustrate our idea and method. Altogether, these findings lay a solid theoretical foundation for attribute reduction based on IF rough sets.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 155 ◽  
Author(s):  
Lin Sun ◽  
Xiaoyu Zhang ◽  
Jiucheng Xu ◽  
Shiguang Zhang

Attribute reduction as an important preprocessing step for data mining, and has become a hot research topic in rough set theory. Neighborhood rough set theory can overcome the shortcoming that classical rough set theory may lose some useful information in the process of discretization for continuous-valued data sets. In this paper, to improve the classification performance of complex data, a novel attribute reduction method using neighborhood entropy measures, combining algebra view with information view, in neighborhood rough sets is proposed, which has the ability of dealing with continuous data whilst maintaining the classification information of original attributes. First, to efficiently analyze the uncertainty of knowledge in neighborhood rough sets, by combining neighborhood approximate precision with neighborhood entropy, a new average neighborhood entropy, based on the strong complementarity between the algebra definition of attribute significance and the definition of information view, is presented. Then, a concept of decision neighborhood entropy is investigated for handling the uncertainty and noisiness of neighborhood decision systems, which integrates the credibility degree with the coverage degree of neighborhood decision systems to fully reflect the decision ability of attributes. Moreover, some of their properties are derived and the relationships among these measures are established, which helps to understand the essence of knowledge content and the uncertainty of neighborhood decision systems. Finally, a heuristic attribute reduction algorithm is proposed to improve the classification performance of complex data sets. The experimental results under an instance and several public data sets demonstrate that the proposed method is very effective for selecting the most relevant attributes with great classification performance.


2016 ◽  
Vol 693 ◽  
pp. 1346-1349
Author(s):  
Xiao Yu Chen ◽  
Wen Liao Du ◽  
An Sheng Li ◽  
Kun Li ◽  
Chun Hua Qian

Rough set theory is a useful tool for attribute reduction of fault diagnosis for rotating machinery, but cannot be efficiently used to sample increased areas. Aiming at the problem of incremental attribute reduction, a novel attribute reduction algorithm was put forward based on the binary resolution matrix for the two updating situations and the algorithm had a low space complex. Finally, with the fault diagnosis experiments of the bearing, the attribute reduction method was proved to be correct.


Sign in / Sign up

Export Citation Format

Share Document