Neutron Powder Diffraction Investigation of Pd2.7Ni0.3P0.94

2004 ◽  
Vol 443-444 ◽  
pp. 353-356
Author(s):  
M. Vennström ◽  
Y. Andersson

Pd3P, which crystallises in the cementite, Fe3C-type structure, forms a solid solution with nickel. The crystal structure contains two crystallographically different palladium sites (8d and 4c). Refinements of neutron powder diffraction intensities using the Rietveld method show that all nickel atoms occupy the eight-fold position. The unit cell parameters were refined to a=5.7812(4) Å, b=7.4756(6) Å and c=5.1376(4) Å, for Pd2.7Ni0.3P0.94.

2004 ◽  
Vol 443-444 ◽  
pp. 361-364
Author(s):  
Yasushi Sato ◽  
M. Valkeapää ◽  
Valery Petrykin ◽  
Minoru Osada ◽  
S.-G. Eriksson ◽  
...  

We have performed neutron powder diffraction (NPD) experiments on polycrystalline powders with nominal compositions (Ca0.5La0.5)(Ba1.25La0.75)Cu3O7- δ , (Ca0.6La0.4)(Ba1.15La0.85)Cu3O7-δ and (Ca0.8La0.2)(Ba0.95La1.05)Cu3O7-δ . The diffraction patterns, analysed by the Rietveld method, show that all samples consist mainly of a tetragonal Y-123 type phase. Unit cell parameters a and c shorten as the calcium content increases: a = 3.8660(2), 3.8634(3), and 3.8624(5) Å; c = 11.6325(11), 11.6143(14), and 11.5822(20) Å for x-values 0.5, 0.6, and 0.8, respectively. For the x = 0.6 and 0.8 samples the Rietveld refinement of calcium occupancies and EDX analysis suggest that the actual composition is closer to x ≈ 0.5. However, since the lattice parameters do change, it is also suggested that at these higher doping levels calcium does enter the Y- site to a larger extent than for the x = 0.5 composition. This is also in accordance with previously reported values for the Tc, which decreases slighty as x changes from 0.5 to 0.6 and has a pronounced change from 80 K to 73 K for x = 0.6 and 0.8, respectively.


2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Myroslava Horiacha ◽  
Galyna Nychyporuk ◽  
Rainer Pöttgen ◽  
Vasyl Zaremba

Abstract Phase formation in the solid solution TbNiIn1−x Ga x at 873 K was investigated in the full concentration range by means of powder X-ray diffraction and EDX analysis. The samples were synthesized by arc-melting of the pure metals with subsequent annealing at 873 K for one month. The influence of the substitution of indium by gallium on the type of structure and solubility was studied. The solubility ranges have been determined and changes of the unit cell parameters were calculated on the basis of powder X-ray diffraction data: TbNiIn1–0.4Ga0–0.6 (ZrNiAl-type structure, space group P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74461(8)–0.72711(17) and c = 0.37976(5)–0.37469(8) nm); TbNiIn0.2–0Ga0.8–1.0 (TiNiSi-type structure, space group Pnma, а = 0.68950(11)–0.68830(12), b = 0.43053(9)–0.42974(6), с = 0.74186(10)–0.73486(13) nm). The crystal structures of TbNiGa (TiNiSi type, Pnma, a = 0.69140(5), b = 0.43047(7), c = 0.73553(8) nm, wR2=0.0414, 525 F 2 values, 21 variables), TbNiIn0.83(1)Ga0.17(1) (ZrNiAl type, P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74043(6), c = 0.37789(3) nm, wR2 = 0.0293, 322 F 2 values, 16 variables) and TbNiIn0.12(2)Ga0.88(2) (TiNiSi type, Pnma, a = 0.69124(6), b = 0.43134(9), c = 0.74232(11) nm, wR2 = 0.0495, 516 F 2 values, 21 variables) have been determined. The characteristics of the solid solutions and the variations of the unit cell parameters are briefly discussed.


2018 ◽  
Vol 33 (1) ◽  
pp. 62-65
Author(s):  
Martin Etter

Commercially available trisodium hexachlororhodate (Na3RhCl6) was dehydrated and characterized by laboratory X-ray powder diffraction. The crystal structure is isostructural to the Na3CrCl6 structure type with space group P$\bar 31$c. Unit-cell parameters are a = 6.8116(1) Å, c = 11.9196(2) Å, V = 478.95(2) Å3, and Z = 2.


2018 ◽  
Vol 82 (5) ◽  
pp. 1033-1047 ◽  
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Dmitry A. Ksenofontov ◽  
Nikita V. Chukanov ◽  
Vasiliy O. Yapaskurt ◽  
...  

ABSTRACTThe borate mineral satimolite, which was first described in 1969 and remained poorly-studied until now, has been re-investigated (electron microprobe analysis, single-crystal and powder X-ray diffraction studies, crystal-structure determination, infrared spectroscopy) and redefined based on the novel data obtained for the holotype material from the Satimola salt dome and a recently found sample from the Chelkar salt dome, both in North Caspian Region, Western Kazakhstan. The revised idealized formula of satimolite is KNa2(Al5Mg2)[B12O18(OH)12](OH)6Cl4·4H2O (Z = 3). The mineral is trigonal, space group R$\bar{3}$m, unit-cell parameters are: a = 15.1431(8), c = 14.4558(14) Å and V = 2870.8(4) Å3 (Satimola) and a = 15.1406(4), c = 14.3794(9) Å and V = 2854.7(2) Å3 (Chelkar). The crystal system and unit-cell parameters are quite different from those reported previously. The crystal structure of the sample from Chelkar was solved based on single-crystal data (direct methods, R = 0.0814) and the structure of the holotype from Satimola was refined on a powder sample by the Rietveld method (Rp = 0.0563, Rwp = 0.0761 and Rall = 0.0667). The structure of satimolite is unique for minerals. It contains 12-membered borate rings [B12O18(OH)12] in which BO3 triangles alternate with BO2(OH)2 tetrahedra sharing common vertices, and octahedral clusters [M7O6(OH)18] with M = Al5Mg2 in the ideal case, with sharing of corners between rings and clusters to form a three-dimensional heteropolyhedral framework. Each borate ring is connected with six octahedral clusters: three under the ring and three over the ring. Large ellipsoidal cages in the framework host Na and K cations, Cl anions and H2O molecules.


2017 ◽  
Vol 32 (4) ◽  
pp. 244-248 ◽  
Author(s):  
F. Laufek ◽  
A. Vymazalová ◽  
M. Drábek

The Pd2HgSe3 phase was synthetized from individual elements by the silica glass tube technique and its crystal structure has been refined by the Rietveld method. The Pd2HgSe3 phase crystalizes in P$\bar 3$m1 space group with the unit-cell parameters a = 7.3096(2) Å, c = 5.2829(1) Å, V = 244.45(1) Å3, Dc = 8.84 g/cm3, and Z = 2. In its layered crystal structure, the [PdSe6] octahedra share opposing Se–Se edges with adjacent [PdSe4] squares forming layers parallel with the (001) plane. The layers show AA type stacking along the c-axis. Hg atoms occupy the anti-cubooctahedral voids between two consecutive layers. Pd2HgSe3 is isostructural with Pt2HgSe3 and Pt4Tl2X6 (X = S, Se, or Te) phases. The structure can be viewed as a 2a.2a.c superstructure of PtSe2.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 360 ◽  
Author(s):  
G. E. Delgado ◽  
C. Rincón ◽  
G. Marroquin

The crystal structure of the ordered vacancy compound (OVC) Cu3In5Te9 was analyzed using powder X-ray diffraction data. Several structural models were derived from the structure of the Cu-poor Cu-In-Se compound b-Cu0.39In1.2Se2 by permuting the cations in the available site positions. The refinement of the best model by the Rietveld method in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3, led to Rp = 7.1 %, Rwp = 8.5 %, Rexp = 6.4 %, S = 1.3 for 162 independent reflections. This model has the following Wyckoff site atomic distribution: Cu1 in 2e (0,0,0); In1 in 2f (½,½,0), In2 in 2d (0,½,¼); Cu2-In3 in 2b (½,0,¼); in 2a (0,0,¼); Te in 8n (x,y,z).


1996 ◽  
Vol 11 (1) ◽  
pp. 13-16 ◽  
Author(s):  
L. A. Solovyov ◽  
M. L. Blochina ◽  
S. D. Kirik ◽  
A. I. Blochin ◽  
M. G. Derikova

The crystal structure of [Pd(NH3)4]C2O4 was determined from X-ray powder data. The crystals are triclinic with unit-cell parameters: a=7.0807(7) Å, b=7.0806(7) Å, c=3.8011(5) Å, α=91.910(1)°, β=98.665(1)°, γ=97.283(1)°, S.G.=P−1, Z=1, V=187.11 Å3. All non-hydrogen atoms were located from the Patterson map. The structure was refined by the Rietveld technique: Rp−b=6.88, Rwp=6.51, RB=2.66. The crystal structure of [Pd(NH3)4]C2O4 is built from two types of elements: [Pd(NH3)4]2+ and C2O2−4. Cations [Pd(NH3)4]2+ form columns along c with distances (Pd–Pd)=3.8011 Å. C2O2−4 anions occupy places in the middle of the unit cell between layers of [Pd(NH3)4]2+. The compound is stable up to 200 °C and then decomposes, giving Pd powder.


2012 ◽  
Vol 77 (8) ◽  
pp. 1091-1096 ◽  
Author(s):  
Dejan Poleti ◽  
Ljiljana Karanovic ◽  
Miodrag Zdujic ◽  
Cedomir Jovalekic

Powder mixtures of ?-Bi2O3 containing 2, 5 and 10 mole % of TiO2, ZrO2 or HfO2 were homogenized, heated at 820?C for 24 h and quenched in air. X-ray powder diffraction technique was used to characterize the prepared samples. In all cases metastable Bi2O3 polymorphs, ?-Bi2O3 or ?-Bi2O3, are found as single or major phases. Addition of Ti4+ ions stabilizes ?-Bi2O3 polymorph, while either Zr4+ or Hf4+ ions stabilize ?-Bi2O3 polymorph. In the samples with 2 and 5 mole % of TiO2 the presence of even two ?-Bi2O3 phases (Bi12TiO20 compound and a very low Ti-doped ?-Bi2O3) was established. Similarly, in the sample with 2 mole % of HfO2 two ?-Bi2O3 phases were found. Phase composition of prepared samples, values of unit cell parameters and the appearance of two polymorphs with identical crystal structure but different unit cell parameters are discussed and compared with known data.


2018 ◽  
Vol 33 (3) ◽  
pp. 237-241 ◽  
Author(s):  
Gerzon E. Delgado ◽  
Luigi Manfredy ◽  
S. A. López-Rivera

The crystal structure of the partially ordered vacancy compound Cu2In14/3□4/3Se8, belonging to the system I3-III7-□2-VI12, was analyzed using X-ray powder diffraction data. Several structural models were derived from the structure of the selenium-rich phase β-Cu0.39In1.2Se2 by permuting the cations in the available Wyckoff positions. The refinement of the best model by the Rietveld method in the tetragonal space group P$\overline 4 $ 2c (No 112), with unit-cell parameters a = 5.7487(3) Å, c = 11.5106(6) Å, V = 380.40(3) Å3, led to Rp = 9.0%, Rwp = 9.9%, Rexp = 7.2%, S = 1.4 for 134 independent reflections. This model has the following Wyckoff site atomic distribution: Cu in 2e (0,0,0); In in 2b (½,0,¼), 2d (0,½,¼), and 2f (½,½,0);□ in 2f (½,½,0); Se in 8n (x,y,z).


Sign in / Sign up

Export Citation Format

Share Document