Effect of Hf Addition on High Temperature Properties of Ir-Containing Alloy Coatings

2007 ◽  
Vol 546-549 ◽  
pp. 1689-1694 ◽  
Author(s):  
Hideyuki Murakami ◽  
K. Kamiya ◽  
Akihiro Yamaguchi ◽  
Ying Na Wu ◽  
Seiji Kuroda

In the present study, high temperature properties of Ir-modified and Ir-Hf-modified aluminide coatings on Ni-based single crystal superalloy TMS-82+ were discussed. They were prepared by depositing pure Ir and Ir-Hf alloys on TMS-82+ using magnetron sputtering and EB-PVD, followed by a conventional Al-pack cementation process. The effects of Hf addition on the oxidation resistance and top-coat spallation resistance were investigated. Cyclic oxidation test at 1423K for 1h as one heating cycle revealed that while there is a small difference in oxidation kinetics and spallation lives between Ir and Ir-Hf coatings, drastic difference in surface morphology was observed. After 50 oxidation cycles the Ir-modified aluminide coating showed surface rumpling whereas the Ir-Hf modified aluminide coatings kept the flat surface. It was also revealed that excessive addition of Hf promoted the internal oxidation, resulting in the deterioration of substrates. These results agree with the conventional Pt-modified aluminide coatings and Ni-Al-Hf alloys.

2012 ◽  
Vol 557-559 ◽  
pp. 1721-1726
Author(s):  
Yong Dong Wang ◽  
Yue Bo Zhou

Reactive reactive element oxide RexOy (Re=Ce, Y)-modified aluminide coatings were developed by aluminizing the as-codeposited Ni-RexOy composite film using pack cementation method at 1100°C for 4 h. By comparison, aluminizing was also performed with the same condition on an as-deposited Ni film without RexOy particles. SEM/EDAX and TEM results indicated that the co-deposited CeO2 or Y2O3 particls were homogeneously dispersed in the finer-grain nanocrystalline Ni grains. The cyclic oxidation in air at 900°C indicated that the RexOy -modified aluminide coatings were profoundly spallation resistance as compared to the RexOy -free coatings due to the formation of a continuous adherent α-Al2O3 scale.


2006 ◽  
Vol 510-511 ◽  
pp. 1058-1061 ◽  
Author(s):  
Seok Jun Hong ◽  
Jae Woong Choi ◽  
Gil Ho Hwang ◽  
Won Kyu Han ◽  
Joon Shik Park ◽  
...  

Platinum/Palladium modified aluminide coatings prepared by aluminide pack cementation on the nickel base superalloy Inconnel 738. The platinum/palladium modified aluminide coating of cyclic oxidation behavior at 1200°C was investigated by TGA, XRD and SEM/EDS. Platinum/Palladium modified aluminide coatings showed better cyclic oxidation resistance than Platinum modified aluminide coating and palladium modified aluminide coating compared. Pt and Pd alloy played an enough role in alumina stabilization and in delaying the degradation of β-phase.


2008 ◽  
Vol 595-598 ◽  
pp. 185-190 ◽  
Author(s):  
K. Shirvani ◽  
Amir Firouzi

The diffusion aluminide coatings are widely used in the air-cooling passages to protect their surfaces against high temperature corrosion. In this study plain and Si-modified aluminide coatings were applied by slurry technique on internal surfaces of Ni-base GTD-111 superalloy cylindrical specimens derived from a gas turbine air-cooled blade. The slurries containing Al or Al plus Si powders were applied on internal surfaces by injection method. Then, the samples were heated to high temperature (800-1000°C) to form the coatings. Optical, SEM-EDS, and XRD were utilized for characterizing microstructures and phase compositions of the coatings. The thicknesses of applied coatings on internal surfaces were in the range of 30-50 μm that meets specifications for diffusion coatings in such application (i.e. 25-756m). The examinations demonstrated that both coating types were contained β-NiAl phase as the matrix. The uniformities of coatings applied on different surface positions of passageway were determined. In addition, the effects of time and temperature of coating process as well as mass of dried slurry on the coating thickness were also discussed.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840056 ◽  
Author(s):  
Byeong Woo Lee

The halide-activated pack cementation method was utilized to deposit aluminide or silicide coatings on Inconel 617 and Hastelloy X superalloys. Aluminide and silicide diffusion coatings were formed at 850[Formula: see text]C for 2 h in nitrogen atmosphere, using a pack mixture containing pure aluminum (Al) or silicon (Si) and aluminum oxide (Al2O3) powders with activators of NH4Cl and AlF3. Aluminide-coated alloys showed homogeneous and uniform microstructures. Al diffused into the alloy inwards and aluminide diffusion coatings of [Formula: see text]17 [Formula: see text]m thick were formed inside the alloy. It was shown that the Al coatings played a key role in blocking off the excessive corrosion products at a high temperature for the alloys. The enhanced thermal stability and improved wear resistance were achieved in the aluminide coatings. In contrast to the aluminide coating, the silicide coating played a negative role, unable to provide the protective layer. The microstructural evolution and thermal stability of the aluminide- and silicide-coated alloys have been elucidated.


2019 ◽  
Vol 253 ◽  
pp. 03006
Author(s):  
Jolanta Romanowska ◽  
Maryana Zagula-Yavorska ◽  
Łukasz Kolek

The application of protective aluminide coatings is an effective way to increase the oxidation resistance of the treated parts and prolongs their lifetime. The addition of small amount of noble metals (platinum or palladium) or reactive elements such as: hafnium, zirconium, yttrium and cerium has a beneficial effect on oxidation behavior. This beneficial effect includes an improvement of adhesion of alumina scales and reduction of oxide scale growth rate. Platinum and hafnium or zirconium modified aluminide coating were deposited on pure nickel using the electroplating and CVD methods. The coatings consisted of two layers: an outer, β-NiAl phase and the interdiffusion γ’-Ni3Al phase. Palladium dissolved in the whole coating, whereas hafnium and zirconium formed inclusions on the border of the layers. Samples were subjected to cyclic oxidation test at 1100 °C for 200h. Oxidation resistance of the palladium, Hf+Pd and Zr+Pd modified coatings deposited on pure nickel does not differ significantly, but is better than the oxidation resistance of the non-modified one.


2013 ◽  
Vol 662 ◽  
pp. 383-386
Author(s):  
Peng Song ◽  
Jian Sheng Lu

Pt-modified nickel aluminide coatings have been more widely used for protection of jet-engine components against high-temperature oxidation. The coating rumpling of two Pt-content NiPtAl coatings was studied in this paper during high temperature exposure. The results indicated that the NiPtAl coating grains size made a great contribution to the oxide surface morphologies, especially rumpling. Smaller grain size within high-Pt coating indicated a denser rumpling compared to low-Pt coating due to PtAl2 formation in the earlier coating. The failed local alumina at the ridges was also found on the low-Pt coating after cyclic oxidatioin. It was found that polished treatment resulted a comparatively flat and homogeneous oxide layer compared to as-received coatings. The temperature cycling could promote the aluminide coating rumpling, however, the polished treatment could not completely eliminate the roughening.


Sign in / Sign up

Export Citation Format

Share Document