pd alloy
Recently Published Documents


TOTAL DOCUMENTS

523
(FIVE YEARS 78)

H-INDEX

49
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Wenjin Li ◽  
Jing Shi ◽  
Wenjin Bian ◽  
Jianting Li ◽  
Xiaoqing Chen ◽  
...  

Abstract This study aimed to compare MRI quality between common fast spin echo T2 weighted imaging (FSE T2WI) with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) FSE T2WI for patients with various porcelain fused to metal (PFM) crown and analyze the value of PROPELLER technique in reducing metal artifacts. Common FSE T2WI and PROPELLER FSE T2WI sequences for axial imaging of head were applied in participants with different PFM crowns: cobalt-chromium (Co-Cr) alloy, pure titanium (Ti), gold-palladium (Au-Pd) alloy. Two radiologists evaluated overall image quality of section in PFM using a 5-point scale qualitatively and measured the maximum artifact area and artifact signal-to-noise ratio (SNR) quantitatively. The metal crown with the least artifacts and the optimum image quality shown in common FSE T2WI and PROPELLER FSE T2WI were in Au–Pd alloy, Ti, and Co–Cr alloy order. PROPELLER FSE T2WI was superior to common FSE T2WI in improving image quality and reducing artifact area for Co-Cr alloy (17.0±0.2% smaller artifact area, p<0.001) and Ti (11.6± 0.7 % smaller artifact area, p=0.005), but had similar performance compared to FSE T2WI for Au-Pd alloy. For all PFMs, PROPELLER FSE T2WI significantly reduced the signal-to-noise ratio (SNR) of artifact (393.57±89.75 VS. 214.05±70.45, p < 0.001) when compared to common FSE T2WI.Therefore, the different PFM crown generate varying degrees of metal artifacts in MRI, and the PROPELLER can effectively reduce metal artifacts especially in the PFM crown of Co-Cr alloy.


Author(s):  
Ju Deng ◽  
Yuanyuan Li ◽  
Dongmei Deng ◽  
Haibo He ◽  
Xiaoxia Yan ◽  
...  

2021 ◽  
Vol 57 (11) ◽  
pp. 1194-1200
Author(s):  
V. M. Ievlev ◽  
A. I. Dontsov ◽  
S. V. Gorbunov ◽  
T. N. Il’inova ◽  
S. V. Kannykin ◽  
...  
Keyword(s):  

2021 ◽  
Vol 59 (6) ◽  
pp. 1511-1542
Author(s):  
Yiguan Lu ◽  
C. Michael Lesher ◽  
Liqiang Yang ◽  
Matthew I. Leybourne ◽  
Wenyan He ◽  
...  

ABSTRACT The Jinbaoshan platinum group element-(Cu)-(Ni) deposit in southwest China is a sulfide-poor magmatic platinum-group element deposit that experienced multiple phases of post-magmatic modification. The sulfide assemblages of most magmatic Ni-Cu-platinum-group element deposits in China and elsewhere in the world are dominated by pentlandite-pyrrhotite-chalcopyrite with lesser magnetite and minor platinum-group minerals. However, Jinbaoshan is characterized by (1) hypogene violarite-pyrite 1-millerite-chalcopyrite and (2) supergene violarite-(polydymite)-pyrite 2-chalcopyrite assemblages. The platinum-group minerals are small (0.5–10 μm diameter) and include moncheite Pt(Te,Bi)2, mertieite-I Pd11(Sb,As)4, the atokite Pd3Sn – rustenburgite Pt3Sn solid solution, irarsite IrAsS, and sperrylite PtAs2 hosted mainly by violarite, silicates (primarily serpentine), and millerite. The platinum-group minerals occur in two sulfide assemblages: (1) mertieite-I-dominant (with irarsite, palladium, and Pd-alloy) in the hypogene assemblage and (2) moncheite-dominant (with irarsite, sperrylite, and atokite) in the supergene assemblage. Palladium and intermediate platinum-group elements (Os, Ir, Ru) are concentrated mainly in violarite, polydymite, and pyrite 2. Platinum is seldom hosted by base metal sulfides and occurs mainly as discrete platinum-group minerals, such as moncheite, sperrylite, and merenskyite. Violarite and polydymite in the Jinbaoshan deposit contain more Pb-Ag than pentlandite and pyrrhotite in the Great Dyke and Lac des Iles deposit. The formation of the sulfide assemblages in Jinbaoshan can be interpreted to have occurred in three stages: (1) a magmatic Fe-Ni-Cu sulfide melt crystallized Fe-Ni monosulfide and Cu-rich intermediate solid solutions, which inverted to a primary pyrrhotite-pentlandite-chalcopyrite-magnetite assemblage; (2) an early-secondary hypogene voilarite-millterite-pyrite 1-chalcopyrite assemblage formed by interaction with a lower-temperature magmatic-hydrothermal deuteric fluid; and (3) a late-secondary supergene violarite-polydymite-pyrite 2-chalcopyrite assemblage formed during weathering. Late-magmatic-hydrothermal fluids enriched the mineralization in Pb-Ag-Cd-Zn, which are incompatible in monosulfide solid solution, added Co-Pt into violarite, and expelled Pd to the margins of hypogene violarite and millerite, which caused Pd depletion in the hypogene violarite and the formation of mertieite-I. Supergene violarite inherited Pd and intermediate platinum-group elements from primary pentlandite. Thus, the unusual sulfide assemblages in the Jinbaoshan platinum-group element-(Cu)-(Ni) deposit results from multiple overprinted post-magmatic processes, but they did not significantly change the chalcophile element contents of the mineralization, which is interpreted to have formed at high magma:sulfide ratios (R factors) through interaction of crustally derived sulfide and a hybrid picritic-ferropicritic magma derived from subduction-metasomatized pyroxenitic mantle during impingement of the Emeishan plume on the Paleo-Tethyan oceanic subduction system.


2021 ◽  
pp. 151806
Author(s):  
Hongyan Zhu ◽  
Zhiyuan Shi ◽  
Chao Zhang ◽  
Boxiang Gao ◽  
Ji Chen ◽  
...  

Author(s):  
Yiyao Ge ◽  
Xixi Wang ◽  
Biao Huang ◽  
Zhiqi Huang ◽  
Bo Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document