substrate effect
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 60)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Kang Liang ◽  
Kunpeng Gao ◽  
Wenqing Cai

The nanoindentation (NI) experiment is an effective method to evaluate the micromechanical property of materials. The substrate effect is a nonnegligible factor which could influence the accuracy of the NI experiment result. Large numbers of previous studies have focused on the substrate effect based on the coating/substrate model, whereas the substrate effect in the testing of the hybrid material was rarely involved. The real NI experiment and the numerical simulation method were adopted to reveal the characteristics of the substrate effect in the NI experiment of the hybrid material in this paper, such as the rock or cement material. The peak displacement h peak and the residual displacement h residual of the indenter, which could obtain directly from the NI experiment and were usually considered as key basic variables to calculated other parameters, were selected as evaluation indexes of the substrate effect. The results indicated that there was a significant difference of the NI experiment result between the coating/substrate and the hybrid material under the same condition. The lateral boundary stiffness and discontinuous face were considered as main factors that induced this difference, and their effect were analysed, respectively. Young’s modulus E s and Poisson’s ratio μ s of the substrate were selected as the variables in the parametric study, and the relationship between them and the NI experiment result were discussed.


Vacuum ◽  
2022 ◽  
pp. 110886
Author(s):  
Yongjian Ma ◽  
Xiaodong Zhang ◽  
Boyuan Feng ◽  
Wenbo Tang ◽  
Tiwei Chen ◽  
...  
Keyword(s):  

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1325
Author(s):  
Igor Bychkov ◽  
Sergey Belim ◽  
Ivan Maltsev ◽  
Vladimir Shavrov

In this paper, we investigate the behavior of 2D ferromagnetic (FM) films on a ferroelectric (FE) substrate with a periodic structure. The two-dimensional Frenkel–Kontorova (FK) potential simulates the substrate effect on the film. The substrate potential corresponds to a cubic crystal lattice. The Ising model and the Wolf cluster algorithm are used to describe the magnetic behavior of a FM film. The effect of an electric field on a FE substrate leads to its deformation, which is uniform and manifests itself in a period change of the substrate potential. Computer simulation shows that substrate deformations lead to a decrease in the FM film Curie temperature. If the substrate deformations exceed 5%, the film deformations become inhomogeneous. In addition, we derive the dependence of film magnetization on the external electric field.


2021 ◽  
Author(s):  
Sujin Lee ◽  
Byungjoon Min ◽  
Junhyeok Bang

Abstract The physical and chemical properties of atomically thin two-dimensional (2D) materials can be modified by the substrates. In this study, the substrate effect on the electrocatalytic hydrogen evolution reaction (HER) in 2D Mo2C monolayers was investigated using first principles calculations. The isolated Mo2C monolayer shows large variation in HER activity depending on hydrogen coverage: it has relatively low activity at low hydrogen coverage but high activity at high hydrogen coverage. Ag, Au, Cu, and graphene were used as substrates to study the substrate effect. While the effects of the Au and graphene substrates on the HER activity are insignificant, Ag and Cu substrates improve the HRE activity, especially at low hydrogen coverage, by modifying the valence electrons in the Mo2C layer; therefore, the HER activity of the Mo2C monolayer becomes high for any hydrogen coverage. Our results suggest that, in two-dimensional electrocatalysis, the substrate has a degree of freedom to tune the catalytic activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huixing Kang ◽  
Ting Zhu ◽  
Yan Zhang ◽  
Xinran Ke ◽  
Wenjuan Sun ◽  
...  

Crops developed under elevated carbon dioxide (eCO2) exhibit enhanced leaf photosynthesis under steady states. However, little is known about the effect of eCO2 on dynamic photosynthesis and the relative contribution of the short-term (substrate) and long-term (acclimation) effects of eCO2. We grew an Oryza sativa japonica cultivar and a Triticum aestivum cultivar under 400 μmol CO2 mol−1 air (ambient, A) and 600 μmol CO2 mol−1 air (elevated, E). Regardless of growth [CO2], the photosynthetic responses to the sudden increase and decrease in light intensity were characterized under 400 (a) or 600 μmol CO2 mol−1 air (e). The Aa1, Ae2, Ea3, and Ee4 treatments were employed to quantify the acclimation effect (Ae vs. Ee and Aa vs. Ea) and substrate effect (Aa vs. Ae and Ea vs. Ee). In comparison with the Aa treatment, both the steady-state photosynthetic rate (PN) and induction state (IS) were higher under the Ae and Ee treatments but lower under the Ea treatment in both species. However, IS reached at the 60 sec after the increase in light intensity, the time required for photosynthetic induction, and induction efficiency under Ae and Ee treatment did not differ significantly from those under Aa treatment. The substrate effect increased the accumulative carbon gain (ACG) during photosynthetic induction by 45.5% in rice and by 39.3% in wheat, whereas the acclimation effect decreased the ACG by 18.3% in rice but increased it by 7.5% in wheat. Thus, eCO2, either during growth or at measurement, enhances the dynamic photosynthetic carbon gain in both crop species. This indicates that photosynthetic carbon loss due to an induction limitation may be reduced in the future, under a high-CO2 world.


Sign in / Sign up

Export Citation Format

Share Document