Effect of Structure on Hot Tearing Properties of Aluminum Alloys

2007 ◽  
Vol 561-565 ◽  
pp. 995-998 ◽  
Author(s):  
Dmitry G. Eskin ◽  
Laurens Katgerman

Hot tearing is a significant problem upon direct-chill casting of high-strength aluminum alloys. The occurrence of hot cracks is related to the thermal contraction of the solid phase and to the lack of feeding by the liquid phase during solidification. It has been identified that structure features such as grain size and amount of nonequilibrium eutectics influence both phenomena involved in hot tearing. Experimental and computer-simulation results are presented for a range of model and commercial aluminum alloys. The results are obtained both during special small-scale experiments and during industrial-scale direct-chill casting. It is shown that grain refinement reduces hot tearing susceptibility of aluminum alloys through the related decrease of the temperature of thermal contraction onset and increased permeability of the mushy zone. The effects of process parameters on hot tearing are also discussed.

2014 ◽  
Vol 925 ◽  
pp. 253-257 ◽  
Author(s):  
Haider T. Naeem ◽  
Kahtan S. Mohammad ◽  
Khairel R. Ahmad

High strength aluminum alloys Al-Zn-Mg-Cu-(0.1) Ni produced by semi-direct chill casting process were homogenized at different conditions then conducted heat treatment process which comprised pre-aging at 120°C for 24 h, retrogression at 180°C for 30 min, and then re-aging at 120°C for 24 h. Microstructural studies showed that add Ni (0.1 wt %) to the alloy will be forming Ni-rich phases such as AlCuNi, AlNi, AlNiFe and AlMgNi which provide a dispersive strengthening affected in the solid-solution and the subsequent heat treatments. The results showed that by this three-step process of heat treatments, the mechanical properties of aluminum alloys Al-Zn-Mg-Cu-(0.1) Ni were substantially improved. The highest attain for the ultimate tensile strength and Vickers hardness for the alloy sample after applied the retrogression and reaging process is about 545 MPa and 237 HV respectively.


Sign in / Sign up

Export Citation Format

Share Document