Simulation of Multi-Pass ECAP by 3D Finite Element Method

2010 ◽  
Vol 667-669 ◽  
pp. 115-120 ◽  
Author(s):  
Li Bao ◽  
Hua Ding ◽  
Wen Juan Zhao ◽  
Rui Bin Mei

Multi-pass ECAP process of pure Al for square samples (Φ=90º, Ψ=37º, pressing speed of 1mm/s), was simulated by using 3D finite element method (FEM).The distribution of equivalent strain for two and four passes was compared. The results showed that route A leads to non-uniform distribution of equivalent strain during multi-pass ECAP. The distribution of equivalent strain is uniform in BC route, but the value of equivalent strain is larger in C route. The simulation results were compared with the experimental ones with previous work in the literature. The simulation also shows that equivalent strain and load increase with pass increasing.

2016 ◽  
Vol 28 (3) ◽  
Author(s):  
Widia Hafsyah Sumarlina Ritonga ◽  
Janti Rusjanti ◽  
Nunung Rusminah ◽  
Aldilla Miranda ◽  
Tatacipta Dirgantara

Introduction: The surgical procedure of dental implant comprising one stage surgery for the non-submerged implant design and two stages for submerged. Submerged design is frequently used in Faculty of Dentistry Padjadjaran University as it is safer in achieving osseointegration. This study has been carried out to evaluate resistant capacity of an implant component design submerged against failure based on location and the value of internal stress during the application of mastication force using the 3D Finite Element Method (FEM). Methods: The present study used a CBCT radiograph of the mandibular patient and Micro CT Scan of one submerged implant. Radiograph image was then converted into a digital model of 3D computerized finite element, subsequently inputted the material properties and boundary condition with 87N occlusion load applied and about 29N for the shear force. Results: The maximum stress was found located at the contact area between the implant and alveolar crest with stress value registered up to 193.31MPa located within an implant body where is understandable that this value is far below allowable strength of titanium alloy of 860 MPa. Conclusion: The location of the maximum stress was located on the contact area between the implant-abutment and alveolar crest. This implant design is acceptable and no failure observed under mastication load.


2021 ◽  
Vol 47 (2) ◽  
pp. 167-183
Author(s):  
Chenhao Chiu ◽  
Bryan Gick

Abstract Speech production requires temporal coordination between the actions of different functional groupings of muscles in the human body. Crucially, such functionally organized units, or “modules”, may be susceptible to disruption by an external stimulus such as a startling auditory stimulus (SAS; >120dB), enabling a possible window into the internal structure of learned speech movements. Following on the observation that SAS is known to accelerate the release of pre-planned actions, the current study examines lip kinematics in SAS-induced responses during speech movements to test whether this accelerated release applies on the scale of entire syllables or on the scale of smaller functional units. Production measures show that SAS-elicited bilabial movements in [ba] syllables are prone to disruption as measured by discontinuity in velocity profiles. We use a 3D finite element method (FEM) biomechanical model to simulate the temporal interaction between muscle groupings in speech. Simulation results indicate that this discontinuity can be accounted for as an instance of temporally decoupled coordination across neuromuscular modules. In such instances, the muscle groupings controlling lip compression and jaw opening, which normally fire sequentially, appear more likely to be activated synchronously.


Sign in / Sign up

Export Citation Format

Share Document