Auditory startle disrupts speech coordination

2021 ◽  
Vol 47 (2) ◽  
pp. 167-183
Author(s):  
Chenhao Chiu ◽  
Bryan Gick

Abstract Speech production requires temporal coordination between the actions of different functional groupings of muscles in the human body. Crucially, such functionally organized units, or “modules”, may be susceptible to disruption by an external stimulus such as a startling auditory stimulus (SAS; >120dB), enabling a possible window into the internal structure of learned speech movements. Following on the observation that SAS is known to accelerate the release of pre-planned actions, the current study examines lip kinematics in SAS-induced responses during speech movements to test whether this accelerated release applies on the scale of entire syllables or on the scale of smaller functional units. Production measures show that SAS-elicited bilabial movements in [ba] syllables are prone to disruption as measured by discontinuity in velocity profiles. We use a 3D finite element method (FEM) biomechanical model to simulate the temporal interaction between muscle groupings in speech. Simulation results indicate that this discontinuity can be accounted for as an instance of temporally decoupled coordination across neuromuscular modules. In such instances, the muscle groupings controlling lip compression and jaw opening, which normally fire sequentially, appear more likely to be activated synchronously.

2010 ◽  
Vol 667-669 ◽  
pp. 115-120 ◽  
Author(s):  
Li Bao ◽  
Hua Ding ◽  
Wen Juan Zhao ◽  
Rui Bin Mei

Multi-pass ECAP process of pure Al for square samples (Φ=90º, Ψ=37º, pressing speed of 1mm/s), was simulated by using 3D finite element method (FEM).The distribution of equivalent strain for two and four passes was compared. The results showed that route A leads to non-uniform distribution of equivalent strain during multi-pass ECAP. The distribution of equivalent strain is uniform in BC route, but the value of equivalent strain is larger in C route. The simulation results were compared with the experimental ones with previous work in the literature. The simulation also shows that equivalent strain and load increase with pass increasing.


2011 ◽  
Vol 110-116 ◽  
pp. 1458-1465 ◽  
Author(s):  
M. Khadem ◽  
M. M. Kheirikhah

Nowadays Shape Memory Alloys (SMAs) are used as actuators in many applications such as aerospace structures. In sandwich structures, the SMA wires or plates are used in the skins for shape control of the structure or vibration damping. In this paper, bending behavior of sandwich plates with embedded SMA wires in their skins is studied. 3D finite element method is used for construction and analysis of the sandwich plate with a flexible core and two stiff skins. Some important points such as continuity conditions of the displacements, satisfaction of interlaminar transverse shear stresses, the conditions of zero transverse shear stresses on the upper and lower surfaces and in-plane and transverse flexibility of soft core are considered for accurate modeling and analysis of sandwich structures. Solution for bending analysis of sandwich plates under various transverse loads are presented and the effect of many parameters such as plate dimensions, loading conditions, material properties of core, skins and SMA wires are studied. Comparison of the present results in special case with those of the three-dimensional theory of elasticity and some plate theories confirms the accuracy of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document