Free Vibration Test for Damping Characteristics of Hybrid Polyester Matrix Composite with Carbon Particles

2016 ◽  
Vol 11 ◽  
pp. 1-6
Author(s):  
K. Karthik ◽  
R. Rohith Renish ◽  
I. Irfan Ahmed ◽  
T. Niruban Projoth

In this research aims to study the damping characteristics of hybrid polymer composite, which can be used in engineering structures and in many other applications. Hybrid composites are namely Glass fiber and carbon filler reinforced with polyester and epoxy matrix have been prepared by vacuum bag molding fabrication technique. Then the free vibration test were conducted using FFT analyzer with Lab VIEW software. The damping ratio and natural frequency were investigated for fabricated composites. Then through ANSYS, the mode shapes and natural frequencies were determined and the results were compared with experimental results. The damping ratio increases with increased volume fractions of E-glass fibers for both the types of polymer composites. Vibrations are concerned to large structures such as aircraft, as well as small structures such as electronic equipments.

2014 ◽  
Vol 2014.20 (0) ◽  
pp. _10905-1_-_10905-2_
Author(s):  
Takahiro AOKI ◽  
Shin MORISHITA

Author(s):  
Hamid R. Hamidzadeh

The particle impact damper is an effective vibration damping treatment that can be used in the cases where visco-elastic constrained layer damping fails due to excessive surrounding temperature. In this type of passive damping, particles move in a container attached to the vibrating system resulting in plastic impact with the container. In the presented theoretical study, the damping characteristics of free oscillation for a vertical system with an initial displacement are considered and a governing equation for the system under free vibration with a particle damper is derived. To evaluate the damping characteristics for the free vibrating system, the equivalent damping ratio is determined by considering both kinematics and kinetics of the particle motion and its impacts with the container. The presented solution concludes that in general damping effectiveness can be enhanced by increasing the mass of the particle in comparison with total mass of the system. Mathematical optimum clearance for the moving particle and the equivalent viscous damping ratio are determined for the best performance of the particle impact damper.


2020 ◽  
Vol 37 (4) ◽  
pp. 471-474
Author(s):  
Miyuki T. Nakata ◽  
Mao Nakao ◽  
Asuka Denda ◽  
Yusuke Onoda ◽  
Haruko Ueda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document