flexural rigidity
Recently Published Documents


TOTAL DOCUMENTS

713
(FIVE YEARS 152)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Satishkumar Chittaliya

Abstract: The car's chassis is also called a structure that locates and mounts all the vehicle's components. It also creates a secure environment for the occupants. The chassis will provide torsional and flexural rigidity to the vehicle that makes the chassis one of the most crucial elements of the vehicle. Therefore, the front impact, rear impact, side impact, front torsional, rear torsional, vertical bending, lateral bending analyses were performed. The contribution of chassis is not limited to supporting the vehicle’s component, but it extends to providing better performance and aesthetics. Therefore, the design of the car chassis must be done accordingly. The current paper deals with the study of the design and analysis of the race car. The deformation, stress, and Factor of safety were considered as the evaluation parameters which were obtained by Finite Element Analysis (FEA) in Ansys software. To design the chassis, the SolidWorks software was utilized. Keywords: Car Chassis, Design, FEA, Material Comparison.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261089
Author(s):  
M. de Vries ◽  
J. Sikorski ◽  
S. Misra ◽  
J. J. van den Dobbelsteen

Steerable instruments allow for precise access to deeply-seated targets while sparing sensitive tissues and avoiding anatomical structures. In this study we present a novel omnidirectional steerable instrument for prostate high-dose-rate (HDR) brachytherapy (BT). The instrument utilizes a needle with internal compliant mechanism, which enables distal tip steering through proximal instrument bending while retaining high axial and flexural rigidity. Finite element analysis evaluated the design and the prototype was validated in experiments involving tissue simulants and ex-vivo bovine tissue. Ultrasound (US) images were used to provide visualization and shape-reconstruction of the instrument during the insertions. In the experiments lateral tip steering up to 20 mm was found. Manually controlled active needle tip steering in inhomogeneous tissue simulants and ex-vivo tissue resulted in mean targeting errors of 1.4 mm and 2 mm in 3D position, respectively. The experiments show that steering response of the instrument is history-independent. The results indicate that the endpoint accuracy of the steerable instrument is similar to that of the conventional rigid HDR BT needle while adding the ability to steer along curved paths. Due to the design of the steerable needle sufficient axial and flexural rigidity is preserved to enable puncturing and path control within various heterogeneous tissues. The developed instrument has the potential to overcome problems currently unavoidable with conventional instruments, such as pubic arch interference in HDR BT, without major changes to the clinical workflow.


2021 ◽  
Author(s):  
Elie Dumas-Lefebvre ◽  
Dany Dumont

Abstract. We provide the first in situ observations of floe size distributions (FSD) resulting from wave-induced sea ice break-up. In order to obtain such data, an unmanned aerial vehicle was deployed from the Canadian Coast Guard Ship Amundsen as it sailed in the vicinity of large ice floes in Baffin Bay and in the St. Lawrence Estuary, Canada. When represented as probability density functions weighted by the surface of ice floes, the FSDs exhibit a strong modal shape which confirms the preferential size hypothesis debated in the scientific community. Both FSDs are compared to a flexural rigidity length scale, which depends on ice properties, and with the wavelength scale. This comparison tends to show that the maximal distance between cracks is preferentially dictated by sea ice thickness and elasticity rather than by the wavelength. Temporal analysis of one fracture event is also done. Results show that the break-up advances almost as fast as the wave energy and that waves responsible for the break-up propagate following the mass loading dispersion relation. Moreover, our experiments show that thicker ice can attenuate wave less than thinner ice. This method thus provides key information on the wave-induced FSD, clarifies theoretical aspects from the construction of the FSD to its implementation in models and brings new knowledge regarding the temporal evolution of sea ice break-up.


2021 ◽  
Vol 141 (12) ◽  
pp. 402-408
Author(s):  
Hamza Abdelli ◽  
Takashiro Tsukamoto ◽  
Shuji Tanaka

2021 ◽  
Vol 12 ◽  
Author(s):  
Max Langer ◽  
Mark C. Kelbel ◽  
Thomas Speck ◽  
Claas Müller ◽  
Olga Speck

From a mechanical viewpoint, petioles of foliage leaves are subject to contradictory mechanical requirements. High flexural rigidity guarantees support of the lamina and low torsional rigidity ensures streamlining of the leaves in wind. This mechanical trade-off between flexural and torsional rigidity is described by the twist-to-bend ratio. The safety factor describes the maximum load capacity. We selected four herbaceous species with different body plans (monocotyledonous, dicotyledonous) and spatial configurations of petiole and lamina (2-dimensional, 3-dimensional) and carried out morphological-anatomical studies, two-point bending tests and torsional tests on the petioles to analyze the influence of geometry, size and shape on their twist-to-bend ratio and safety factor. The monocotyledons studied had significantly higher twist-to-bend ratios (23.7 and 39.2) than the dicotyledons (11.5 and 13.3). High twist-to-bend ratios can be geometry-based, which is true for the U-profile of Hosta x tardiana with a ratio of axial second moment of area to torsion constant of over 1.0. High twist-to-bend ratios can also be material-based, as found for the petioles of Caladium bicolor with a ratio of bending elastic modulus and torsional modulus of 64. The safety factors range between 1.7 and 2.9, meaning that each petiole can support about double to triple the leaf’s weight.


Author(s):  
Tien-Dung Do ◽  
Jimuro Katsuyoshi ◽  
Haonai Cai ◽  
Toshiro Ohashi

Mechanotransduction is a well-known mechanism by which cells sense their surrounding mechanical environment, convert mechanical stimuli into biochemical signals, and eventually change their morphology and functions. Primary cilia are believed to be mechanosensors existing on the surface of the cell membrane and support cells to sense surrounding mechanical signals. Knowing the mechanical properties of primary cilia is essential to understand their responses, such as sensitivity to mechanical stimuli. Previous studies have so far conducted flow experiments or optical trap techniques to measure the flexural rigidity EI (E: Young’s modulus, I: second moment of inertia) of primary cilia; however, the flexural rigidity is not a material property of materials and depends on mathematical models used in the determination, leading to a discrepancy between studies. For better characterization of primary cilia mechanics, Young’s modulus should be directly and precisely measured. In this study, the tensile Young’s modulus of isolated primary cilia is, for the first time, measured by using an in-house micro-tensile tester. The different strain rates of 0.01–0.3 s−1 were applied to isolated primary cilia, which showed a strain rate–dependent Young’s modulus in the range of 69.5–240.0 kPa on average. Atomic force microscopy was also performed to measure the local Young’s modulus of primary cilia, showing the Young’s modulus within the order of tens to hundreds of kPa. This study could directly provide the global and local Young’s moduli, which will benefit better understanding of primary cilia mechanics.


In the investigation on structural analysis of flat head piston deflection and stress equations plays major role in mathematical modeling. The same has been used in this analysis. In the part of the analysis the thickness of the flat head of the piston is considered as the same of that of simply supported circular plate and the loads are applied on it reacts with the supports held at the top of the gudgeon hole. The piston is same as one side closed cylinder and ended with flat circular plate. It is the most general that the deflections due to axial loads are neglected. Hence the deflection and stress equations of the simply supported circular plate are adopted. Aluminum is taken as material of the component throughout the analysis and grey cast iron is taken as material for the rings in the modeling of the piston. Flexural rigidity plays a major role in the calculation for the analysis. The results of the mathematical analysis have been compared with the same of that of simulation using ANSYS software.


2021 ◽  
Vol 2 (11) ◽  
pp. 1004-1016
Author(s):  
Christian M. Wight ◽  
Cari M. Whyne ◽  
Earl R. Bogoch ◽  
Radovan Zdero ◽  
Ryan M. Chapman ◽  
...  

Aims This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Mohamed Farouk ◽  
Majed Alzara ◽  
A. Ehab ◽  
A. M. Yosri

Based on modified methods for the results of first-order analysis of RC columns, different codes approximate the second-order effects by using equations focusing on the maximum additional moment through the column height. These equations did not refer to the additional moments between the column and the connected beam, only the effect of the connected beams is taken into consideration by dealing with the effective length of the column, not the total length. Moreover, these equations did not take into account the second-order effect, which is caused by axial force and the inverse moments due to beam restriction for the column ends. This paper presents a new moment magnifiers matrix for the additional moments at the connection between braced columns and the connected beams as a simplified computation that can be used in the design procedure. That is through an equation based on transforming the original long column in second-order analysis to an equivalent isolated column. The equivalent column was represented as an element restricted with rotational spring support at its ends, and it is subjected to lateral distributed loads that have the same influence of the second-order effect on the induced additional moments in the long column. The suggested equivalent column can be used to form the additional bending moment diagram, also to compute the additional deformations as well. Numerous factors were analyzed linearly by using the presented new moment magnifiers matrix and finite element method, and the results proved the efficiency of the proposed model. Although the presented suggested model is based on the isolated analysis of the long column, the effect of the additional moments in the adjacent long column can be considered by presented two suggestions to improve the model. Also, development was proceeded on the model by modifying the flexural rigidity (EI) which is recommended in ACI to appropriate the time of failure. The additional moment values of the developed model were close to the values calculated by the ACI equation.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1775
Author(s):  
Lili Liu ◽  
Chenxing Yuan ◽  
Wei Li ◽  
Beibei Li ◽  
Xiumei Liu

Rupture discs, also called bursting discs, are widely used in pressure vessels, pressure equipment, and pressure piping in process industries, such as nuclear power, fire protection, and petrochemical industries. To explore the relationship between the burst pressure of reverse-acting rupture discs and their production, two common manufacturing methods, air pressure moulding and hydraulic moulding, were compared in this study. Reverse-acting rupture discs that complied with the form recommended by API 520-2014 were prepared with four release diameters, and burst pressure tests were carried out. These results showed an obvious negative correlation between the forming pressure of rupture discs and their actual burst pressure for all experimental samples. Further study showed that the main reason for this correlation was a reduction in thickness at the top of the rupture disc caused by large plastic deformation during compression moulding. To explore the relationship between the thickness reduction effect and moulding method, this study defined the “relative ratio of thickness reduction” and concluded that the effect of decreasing the thickness of the rupture disc was more obvious for rupture disc substrates with less flexural rigidity. The above conclusions have important significance for guiding the control of the burst pressure of rupture discs.


Sign in / Sign up

Export Citation Format

Share Document