The Study of Fatigue Crack Growth of 304SS with the Influence of Loading Frequency and Temperature

2007 ◽  
Vol 120 ◽  
pp. 103-110
Author(s):  
Jien Jong Chen ◽  
Yan Shin Shih

James performed a series of experimental study on austenitic stainless steels and suggested an equation for assessing the influences of temperature, stress ratio and loading frequency on the fatigue crack growth rate. Authors have studied the effect of either loading frequency alone or of temperature alone on the fatigue crack growth rate by employing the mechanical behaviors of material. In this study, the mechanical behaviors of material are employed for evaluating the combined effect of loading frequency and temperature. Using the derived dimensionless functions of yielding stresses and Young’s modulus, the equation represented the combined effect of loading frequency and temperature on fatigue crack growth rate of 304SS was proposed.

2008 ◽  
Vol 44-46 ◽  
pp. 105-110
Author(s):  
Sen Ge ◽  
Zhong Li ◽  
J.G. Zhang ◽  
Y.C. Xiao ◽  
G.Q. Liu ◽  
...  

Fatigue crack growth rate experiments of center-cracked tension (CCT) specimens of the 2024-T3 aluminum alloy under constant-amplitude load in corrosive environment are carried out with 3 kinds of loading frequency. The fatigue crack growth rates in 3.5% NaCl solution are obtained by using seven-point incremental polynomial method. A probabilistic approach is presented for fatigue crack growth rate in corrosive environment with log-normal random variable model. The reliability analysis of crack propagation is conducted based on the experimental data. The crack exceedance probability at given service time and the distribution of the service time at given crack size are obtained by using the reliability analysis approach. The effect of loading frequency on crack propagation is studied. It is shown that the fatigue crack growth rate is increasing with loading frequency decreasing in corrosive environment. The predicted results by the presented method match the experimental results very well.


2000 ◽  
Vol 123 (2) ◽  
pp. 166-172 ◽  
Author(s):  
M. Itatani ◽  
M. Asano ◽  
M. Kikuchi ◽  
S. Suzuki ◽  
K. Iida,

Fatigue crack growth data obtained in the simulated BWR water environment were analyzed to establish a formula for reference fatigue crack growth rate (FCGR) of austenitic stainless steels in BWR water. The effects of material, mechanical and environmental factors were taken into the reference curve, which was expressed as: da/dN=8.17×10−12s˙Tr0.5s˙ΔK3.0/1−R2.121≦ΔK≦50 MPam where da/dN is fatigue crack growth rate in m/cycle, Tr is load rising time in seconds, ΔK is range (double amplitude) of K–value in MPam, and R is stress ratio. Tr=1 s if Tr<1 s, and Tr=1000 s if Tr cannot be defined. ΔK=Kmax−Kmin if R≧0.ΔK=Kmax if R<0.R=Kmin/Kmax. The proposed formula provides conservative FCGR at low stress ratio. Although only a few data show higher FCGR than that by proposed formula at high R, these data are located in a wide scatter range of FCGR and are regarded to be invalid. The proposed formula is going to be introduced in the Japanese Plant Operation and Maintenance Standard.


Author(s):  
Yuichiro Nomura ◽  
Katsumi Sakaguchi ◽  
Hiroshi Kanasaki ◽  
Shigeki Suzuki

Reference fatigue crack growth rate curves for austenitic stainless steels in pressurized water reactors (PWR) environments were prescribed in JSME S NA1-2004(1) in Japan. The reference fatigue crack growth curve in PWR environment had been determined as a function of stress intensity factor range, temperature, load rising time and stress ratio. In order to confirm the applicability of the reference fatigue crack growth rate curve under high stress ratio, low rising time and low stress intensity range, fatigue crack propagation tests of austenitic stainless steels 316, 316 weld metal, 304 and 304 weld metal were carried out. It is concluded that the reference fatigue crack growth curve in PWR environment is applicable to predict fatigue crack growth rate of this study test conditions.


2015 ◽  
Vol 1096 ◽  
pp. 315-318
Author(s):  
Xu Dong Li ◽  
Hang Lv ◽  
Wen Xiu Wang

The present thesis made a research to evaluate fatigue crack growth rate subjecting to corrosion and cyclic fatigue loading, with the effect of load frequency on fatigue taken into account. A modified Paris’ law based model is proposed. An exponential modified expression of proportional parameter account for fatigue frequency is proposed based on the obvious fact that low frequency loading will lead to long fatigue life, thus prolong interaction time between corrosion media and specimen which will favor for crack propagation. Loading frequency higher enough will shorten that time, thus influence of corrosion will be significantly weaken, close to pure mechanical fatigue. Crack growth rate prediction from proposed formula is proved to be in good agreement with experimental results for steadily extended corrosion fatigue crack.


2017 ◽  
pp. 611-622 ◽  
Author(s):  
Mukhar Sharma ◽  
Punit Arora ◽  
P. K. Singh ◽  
D. K. Sahoo ◽  
Gargi Choudhuri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document