EMERGENCE OF IPS PINI AND HYLURGOPS POROSUS (COLEOPTERA: SCOLYTIDAE) FROM DUFF AT THE BASE OF LODGEPOLE PINES (PINACEAE) KILLED BY MOUNTAIN PINE BEETLE (COLEOPTERA: SCOLYTIDAE)

1999 ◽  
Vol 131 (6) ◽  
pp. 825-827 ◽  
Author(s):  
L. Safranyik ◽  
D.A. Linton ◽  
T.L. Shore

Lodgepole pines, Pinus contorta var. contorta Engelmann, killed by mountain pine beetle, Dendroctonus ponderosae Hopkins, are often subsequently infested by other scolytid species (Safranyik et al. 1996). Ips pini (Say) breeds in the phloem region of the main bole and larger branches in areas not occupied by mountain pine beetle. Adults emerge in the fall and drop to overwinter in the duff near the bases of their brood trees (Safranyik et al. 1996). Hylurgops porosus (LeConte) infests lodgepole pine (Keen 1952; Bright 1976) stumps or severely weakened trees near the root collar and in large roots (Wood 1982). We examined the pattern of emergence of I. pini and H. porosus from the duff around infested trees to describe changes in density over distance from the trees.

1989 ◽  
Vol 121 (6) ◽  
pp. 521-523 ◽  
Author(s):  
A.J. Stock ◽  
R.A. Gorley

The mountain pine beetle, Dendroctonus ponderosae Hopk., causes extensive mortality of lodgepole pine, Pinus contorta var. latifolia Engelm., throughout western North America (Van Sickle 1982). The Prince Rupert Forest Region, in the northwest of British Columbia, initiated an aggressive beetle management program in 1981. Logging of infested stands, and winter felling and burning of individual infested trees are the most common direct control techniques.The “Bristol Lake” infestation developed in the Bulkley Forest District, approximately 55 km northwest of Smithers, B.C., on a steep rocky ridge within the valley of Harold Price Creek. The area contained large volumes of mature lodgepole pine, and control of the infestation was therefore considered critical to the local beetle management plan, but the size (50 ha) and rough topography of the infested area precluded normal direct control measures.


2006 ◽  
Vol 82 (4) ◽  
pp. 579-590 ◽  
Author(s):  
John H Borden ◽  
Anna L Birmingham ◽  
Jennifer S Burleigh

Experiments were conducted near Williams Lake and Quesnel, BC in 2003 to evaluate the effectiveness of the anti-aggregation pheromone verbenone and a three-component non-host volatile (NHV) blend (E-2- and Z-3-hexen-1-ol and benzyl alcohol) in deterring attack of lodgepole pines, Pinus contorta var. latifolia Engelmann, by the mountain pine beetle, Dendroctonus ponderosae Hopkins. In 0.16-ha square plots, with a pheromone-baited tree in the centre and 16 release points at 10-m centres, either verbenone (in a polyurethane gel inside plastic membrane pouches, released at ca. 100 mg/day) or the NHVs (released from separate bubble caps at ca. 1.2 mg/day) deterred attack, but efficacy was not increased by combining them. When deployed from 25 release points at 10-m centres in 0.25-ha square plots, verbenone plus NHVs were effective in deterring attack in some (but not all) cases, when compared to attack in a 25-m wide band around the treated zone. In a test of the push-pull tactic, verbenone plus the NHV blend were tested in a 10-replicate experiment with 100, 44.4 or 25 release points/ha at 10-, 15- or 20-m centres, respectively, in a 1-ha square central zone surrounded by a 3-ha, 50-m-wide band containing 12 pheromone-baited lodgepole pines 50 m apart. Other treatments were pheromonebaited trees alone, and an untreated control. In the three push-pull treatments (but not the bait only or control treatments), 28 of 30 replicates had significantly more mass-attacked trees in the pheromone-baited outer 3 ha than in the inner ha treated with verbenone plus NHVs. The percentage of available trees ≥ 17.5 cm diameter at breast height (dbh) that were mass-attacked was < 10% in 5, 4 and 3 of 10 replicates when verbenone plus NHVs were deployed at 10-, 15- and 20-m centres, respectively, and was < 10% in two each of the bait only and control replicates. The mean ratios of newly-attacked green trees in 2003 to red trees killed in 2002 were significantly lower in the inner ha of the 10-m and 15-m centre treatments (2.6 and 2.7, respectively) than 5.9 in the untreated control. Also the pooled percentages of attacked trees that were not mass-attacked were significantly higher in the inner ha of the treatments with centres at 15 m (24.7%) and 10 m (17.6%) than in the other three treatments (all between 12% and 13%). Despite the apparent efficacy in 10-m and 15-m centre treatments, some replicates failed spectacularly. Failure was not significantly related to the incidence of red trees, but was negatively related to density/ha of available trees and positively related to mean dbh. We recommend operational implementation of the push-pull tactic at 10-m or 15-m centres when the density of available lodgepole pines is > 400/ha, the mean dbh is ≤ 25 cm, current attack is ≤ 15%, and the tactic is part of an integrated pest management program that includes sanitation harvesting. Using verbenone alone at 15-m centres would cost $380/ha (CAD), excluding labour. Key words: mountain pine beetle, Dendroctonus ponderosae, lodgepole pine, Pinus contorta var. latifolia, pheromones, semiochemicals, pest management


1980 ◽  
Vol 112 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Barry G. Hynum ◽  
Alan A. Berryman

AbstractLanding rates as monitored by landing traps indicate that the mountain pine beetle, Dendroctonus ponderosae Hopkins, is not attracted to lodgepole pine, Pinus contorta Dougl., prior to the first gallery start. Bark terpene odors and DBH were not correlated with beetle landing rates, with the exception of beta-phellandrene which accounted for a statistically significant 18% of the variation in landing rates. Beetles were unable to distinguish between hosts, dead hosts and nonhosts during landing. The elderberry pith bioassay indicated the presence of a gallery initiation stimulant in the bark.


1986 ◽  
Vol 62 (1) ◽  
pp. 20-23 ◽  
Author(s):  
J. H. Borden ◽  
L. J. Chong ◽  
T. E. Lacey

Baiting of trees with attractive semiochemicals prior to logging in three high hazard blocks of lodgepole pine (Pinus contorta var. latifolia Engelm.) was effective in inducing attack by the mountain pine beetle (Dendroctonus ponderosae Hopkins) on baited trees and on surrounding unbaited trees. There was evidence for partial shifting of attack loci, concentration of dispersing beetles and containment of emergent beetles as a result of the baiting program. However, baiting was ineffective when the baits were within the understory canopy, and the baiting program did not cause a massive influx of beetles from infestations 75-200 m away from the baited blocks. Such baiting programs would be cost effective if they avoided the necessity of disposing of two attacked trees/ha outside of the baited blocks. They have the additional advantage of reducing the risk of future beetle attacks by removing beetles and their broods during logging of induced infestations.


1987 ◽  
Vol 2 (4) ◽  
pp. 114-116 ◽  
Author(s):  
Patrick J. Shea ◽  
Mark McGregor

Abstract A large-scale field experiment was conducted on the Flathead National Forest, Montana, to evaluate the efficacy of 0.5%, 1.0%, and 2.0% formulations of Sevimol® and Sevin brand XLR® for protecting individual lodgepole pines (Pinus contorta var. latifolia Engelm.) from attack by mountain pine beetles (Dendroctonus ponderosae Hopk.). All concentrations and formulations were highly effective (>95%) in protecting lodgepole pine trees from lethal attack by mountain pine beetle for 1 year, and the 1% and 2% concentrations were effective (>90%) for 2 years. West. J. Appl. For. 2(4):114-116, October 1987


1996 ◽  
Vol 128 (2) ◽  
pp. 199-207 ◽  
Author(s):  
L. Safranyik ◽  
T.L. Shore ◽  
D.A. Linton

AbstractAttack and emergence of the engraver beetles Ips pini Say and I. latidens LeConte were measured in lodgepole pine (Pinus contorta var. latifolia Engelm.) naturally attacked by the mountain pine beetle, Dendroctonus ponderosae Hopk., in 1991. Sample trees were baited with the Ips pheromones ipsdienol and lanierone 1 week and 3 weeks after attack by the mountain pine beetle and again the following spring to observe the effects of the timing of bait placement. The densities of attack, egg gallery length, emergence, and hibernation of Ips species were measured. Ips latidens did not attack either the baited or unbaked trees at breast height until the spring of 1992 and the relatively low emergence was not significantly different by treatments. Among the 1991 treatments, the densities at breast height (1.3 m) of I. pini attack, egg gallery length, adult emergence in the fall of 1991, and numbers of hibernating adults in the duff were all highest for the 3-week treatment and lowest for the unbaked treatment. Significantly higher densities of beetles emerged and hibernated in the duff on the north sides of trees. Ips pini emergence in late summer 1992 from trees additionally baited in spring 1992 was significantly higher than for trees baited only in fall 1991. The density and temporal distribution of the emergence of both Ips species is discussed in relation to that of the mountain pine beetle.


2016 ◽  
Vol 46 (4) ◽  
pp. 557-563 ◽  
Author(s):  
Evan D. Esch ◽  
David W. Langor ◽  
John R. Spence

Breeding pairs of mountain pine beetle (Dendroctonus ponderosae Hopkins) were introduced into freshly cut bolts of whitebark pine (Pinus albicaulis Engelm.) and lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson) in the laboratory. Brood adults emerging from the bolts were collected and galleries were dissected to compare reproductive success, brood production, and adult condition between the two pines. Beetles were more likely to establish egg galleries that produced brood in lodgepole pine than in whitebark pine. Larval gallery density per centimetre of egg gallery was significantly higher in whitebark pine than in lodgepole pine; however, egg galleries also tended to be shorter in whitebark pine bolts, and consequently, brood adults emerging production per gallery did not differ between the two host species. Female body size, mass, and fat content of brood adults and survival from larva to adult did not differ between beetles reared in the two hosts. Though this no-choice assay did not simulate the sequence of events occurring during host selection, these results are consistent with other data suggesting that beetles could be less likely to attack whitebark pines in southwestern Alberta. Whitebark pines that are attacked will produce brood in similar numbers and condition as those from lodgepole pines.


Sign in / Sign up

Export Citation Format

Share Document