3D-Seismic Amplitude Analysis of the Sea Flooc An Important Interpretive Method for Improved Geohazards Evaluations

1996 ◽  
Author(s):  
H.H. Roberts ◽  
E.H. Doyle ◽  
J.R. Booth ◽  
B.J. Clark ◽  
M.J. Kaluza ◽  
...  
1999 ◽  
Vol 39 (1) ◽  
pp. 128 ◽  
Author(s):  
D. Sibley ◽  
F. Herkenhoff ◽  
D. Criddle ◽  
M. McLerie

Between 1973 and 1996 West Australian Petroleum Pty Limited (WAPET) discovered five major gas fields on the southern Rankin Trend including Spar, West Tryal Rocks, Gorgon, Chrysaor, and Dionysus (collectively termed the Greater Gorgon Resource). Recent discoveries at Chrysaor and Dionysus emphasise the role of subtle 3D seismic attributes in finding hydrocarbons and defining reserves with a minimum number of wells.The Gorgon, Chrysaor, and Dionysus fields were covered by 3D seismic data shot in 1991 and 1995, which led WAPET to discover Chrysaor and later Dionysus. Subsequent to the 3D acquisitions, field reservoirs have been correlated with anomalous seismic events (seismic amplitude and amplitude versus offset) that conform to depth structure. Follow-up work has shown that combining these 3D seismic attributes improves the prediction of wet sands, gas sands, and other lithologies.The resulting understanding and confidence provided by this 3D seismic has driven an aggressive exploration program and defined field reserves at a high confidence level. Results include the recent award of permit area WA-267-P to WAPET and the ongoing studies to begin development of the Greater Gorgon Resource.


Geophysics ◽  
1982 ◽  
Vol 47 (12) ◽  
pp. 1693-1705
Author(s):  
Alan O. Ramo ◽  
James W. Bradley

Spatially discontinuous high‐amplitude seismic reflections were encountered in seismic data acquired in the early 1970s in northeast Louisiana and southwest Arkansas. Large acoustic impedance contrasts are known to result from gaseous hydrocarbon accumulations. However, amplitude anomalies may also result from large density and velocity contrasts which are geologically unrelated to hydrocarbon entrapment. A well drilled on the northeast Louisiana amplitude anomaly encountered 300 ft of rhyolite at a depth of 6170 ft. Subsequent gravity and total field magnetic profiles across the feature revealed the presence of 0.2 mgal and 17 gamma anomalies, respectively. The measured magnetic susceptibility of the rhyolite was 0.0035 emu and the measured density contrast was [Formula: see text]. Model studies based on the seismically determined areal extent of the anomaly and the measured thickness of rhyolite accounted for the observed gravity and magnetic anomalies. The southwest Arkansas amplitude anomaly was a sheet‐like reflection which terminated to the north and west within the survey area. Two north‐south gravity profiles exhibited a negative character over the sheet‐like reflector but did not exhibit a clear spatial correlation with the north limit of the seismic anomaly. Two north‐south magnetic profiles exhibited tenuous 4 gamma anomalies which appeared to be spatially correlated with the interpreted north edge of the seismic anomaly. A subsequent wildcat well encountered no igneous material but did penetrate 200 ft of salt at about 7500 ft. Reassessment of the gravity and magnetic data indicated that this seismic amplitude anomaly is not attributable to an intrasedimentary igneous source; it suggested a salt‐related 0.2 to 0.3 mgal minimum coextensive with the observed seismic amplitude anomaly. Present amplitude analysis technology would treat these seismic data with suspicion. However, gravity and magnetic data acquisition can provide a relatively inexpensive means for evaluation and verification of amplitude anomalies and thus should be an adjunct for land seismic exploration utilizing amplitude analysis.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. B183-B191 ◽  
Author(s):  
M. Riedel ◽  
G. Bellefleur ◽  
S. R. Dallimore ◽  
A. Taylor ◽  
J. F. Wright

Amplitude and frequency anomalies associated with lakes and drainage systems were observed in a 3D seismic data set acquired in the Mallik area, Mackenzie Delta, Northwest Territories, Canada. The site is characterized by large gas hydrate deposits inferred from well-log analyses and coring. Regional interpretation of the gas hydrate occurrences is mainly based on seismic amplitude anomalies, such as brightening or blanking of seismic energy. Thus, the scope of this research is to understand the nature of the amplitude behavior in the seismic data. We have therefore analyzed the 3D seismic data to define areas with amplitude reduction due to contamination from lakes and channels and to distinguish them from areas where amplitude blanking may be a geologic signal. We have used the spectral ratio method to define attenuation (Q) over different areas in the 3D volume and subsequently applied Q-compensation to attenuate lateral variations ofdispersive absorption. Underneath larger lakes, seismic amplitude is reduced and the frequency content is reduced to [Formula: see text], which is half the original bandwidth. Traces with source-receiver pairs located inside of lakes show an attenuation factor Q of [Formula: see text], approximately half of that obtained for source-receiver pairs situated on deep, continuous permafrost outside of lakes. Deeper reflections occasionally identified underneath lakes show low-velocity-related pull-down. The vertical extent of the washout zones is enhanced by acquisition with limited offsets and from processing parameters such as harsh mute functions to reduce noise from surface waves. The strong attenuation and seismic pull-down may indicate the presence of unfrozen water in deeper lakes and unfrozen pore water within the sediments underlying the lakes. Thus, the blanking underneath lakes is not necessarily related to gas migration or other in situ changes in physical properties potentially associated with the presence of gas hydrate.


2012 ◽  
Vol 52 (1) ◽  
pp. 437 ◽  
Author(s):  
Guillaume Backé ◽  
Ernest Swierczek ◽  
Justin MacDonald ◽  
Adam Bailey ◽  
David Tassone ◽  
...  

In this paper, different 3D seismic attributes calculated to improve the accuracy and robustness of structural interpretations in several energy-rich Australian basins are compared. Detailed and precise fault and fracture maps are crucial not only for initial petroleum play assessment, but also for fault seal analysis and reservoir integrity studies. Robust fault and fracture models are also needed to improve the design of reservoir simulation programs and to manage the long-term containment of gas in geological formations. Different attributes (including coherency, dip-steered similarity, dip-steered median filter, dip-steered variance, apparent dip, and dip-steered most-positive and most-negative curvatures) from an array of 3D seismic datasets to better image structural fabrics, such as normal and different fractures patterns, in the North Perth, Cooper, Ceduna, Otway and Gippsland basins have been calculated. The results provide a remarkable improvement in the quality and precision of structural maps using this multi-attribute mapping workflow by comparison with more conventional maps produced, solely using seismic amplitude data. The key to the successful application of multi-attribute structural analysis, however, remains with the ability of the interpreter to identify meaningful structural information from a large volume of data. Thus, the structural expertise of the interpreter remains as the cornerstone to making geological sense of the various seismic processing techniques available.


Geophysics ◽  
2021 ◽  
pp. 1-36
Author(s):  
Haibin Di ◽  
Cen Li ◽  
Stewart Smith ◽  
Zhun Li ◽  
Aria Abubakar

With the expanding size of three-dimensional (3D) seismic data, manual seismic interpretation becomes time consuming and labor intensive. For automating this process, the recent progress in machine learning, particularly the convolutional neural networks (CNNs), has been introduced into the seismic community and successfully implemented for interpreting seismic structural and stratigraphic features. In principle, such automation aims at mimicking the intelligence of experienced seismic interpreters to annotate subsurface geology both accurately and efficiently. However, most of the implementations and applications are relatively simple in their CNN architectures, which primary rely on the seismic amplitude but undesirably fail to fully use the pre-known geologic knowledge and/or solid interpretational rules of an experienced interpreter who works on the same task. A general applicable framework is proposed for integrating a seismic interpretation CNN with such commonly-used knowledge and rules as constraints. Three example use cases, including relative geologic time-guided facies analysis, layer-customized fault detection, and fault-oriented stratigraphy mapping, are provided for both illustrating how one or more constraints can be technically imposed and demonstrating what added values such a constrained CNN can bring. It is concluded that the imposition of interpretational constraints is capable of improving CNN-assisted seismic interpretation and better assisting the tasks of subsurface mapping and modeling.


Sign in / Sign up

Export Citation Format

Share Document