Amplitude and frequency anomalies in regional 3D seismic data surrounding the Mallik 5L-38 research site, Mackenzie Delta, Northwest Territories, Canada

Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. B183-B191 ◽  
Author(s):  
M. Riedel ◽  
G. Bellefleur ◽  
S. R. Dallimore ◽  
A. Taylor ◽  
J. F. Wright

Amplitude and frequency anomalies associated with lakes and drainage systems were observed in a 3D seismic data set acquired in the Mallik area, Mackenzie Delta, Northwest Territories, Canada. The site is characterized by large gas hydrate deposits inferred from well-log analyses and coring. Regional interpretation of the gas hydrate occurrences is mainly based on seismic amplitude anomalies, such as brightening or blanking of seismic energy. Thus, the scope of this research is to understand the nature of the amplitude behavior in the seismic data. We have therefore analyzed the 3D seismic data to define areas with amplitude reduction due to contamination from lakes and channels and to distinguish them from areas where amplitude blanking may be a geologic signal. We have used the spectral ratio method to define attenuation (Q) over different areas in the 3D volume and subsequently applied Q-compensation to attenuate lateral variations ofdispersive absorption. Underneath larger lakes, seismic amplitude is reduced and the frequency content is reduced to [Formula: see text], which is half the original bandwidth. Traces with source-receiver pairs located inside of lakes show an attenuation factor Q of [Formula: see text], approximately half of that obtained for source-receiver pairs situated on deep, continuous permafrost outside of lakes. Deeper reflections occasionally identified underneath lakes show low-velocity-related pull-down. The vertical extent of the washout zones is enhanced by acquisition with limited offsets and from processing parameters such as harsh mute functions to reduce noise from surface waves. The strong attenuation and seismic pull-down may indicate the presence of unfrozen water in deeper lakes and unfrozen pore water within the sediments underlying the lakes. Thus, the blanking underneath lakes is not necessarily related to gas migration or other in situ changes in physical properties potentially associated with the presence of gas hydrate.

Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. B125-B137 ◽  
Author(s):  
Michael Riedel ◽  
Gilles Bellefleur ◽  
Stephanie Mair ◽  
Thomas A. Brent ◽  
Scott R. Dallimore

We combine acoustic impedance inversion of 3D seismic data, log-to-seismic correlation, and seismic attribute analyses to delineate gas-hydrate zones at the Mallik site, Mackenzie Delta, Northwest Territories, Canada. Well-log data define three distinct hydrate zones over a depth range of 890–1100 m. Synthetic seismic modeling indicates the base of the two deeper hydrate zones are prominent reflectors. The uppermost gas-hydrate zone correlates to seismic data with a lower degree of confidence. The extent and geometry of the two lower hydrate zones suggest that local geology plays a significant role in the lateral and vertical distribution of gas hydrate at Mallik. The reliability of the hydrate concentrations calculated from the inverted impedances isqualified by the match between original and synthetic seismic data to produce confidence maps for the two lower gas-hydrate-bearing intervals. A total in-place volume estimate of solid gas hydrate for an area of [Formula: see text] around well 5L-38 yields a value of approximately [Formula: see text] (equivalently, [Formula: see text] of gas). We further qualify our mapping of gas hydrates by some amount of continuous resource, defined as lateral continuity measured by seismic attribute similarity and sand-dominated rock. Using these attributes, the continuous amount of hydrate at Mallik is about half the in-place volume (i.e., [Formula: see text]). Elsewhere within the 3D seismic cube, the seismic impedance inversion yields evidence of potential gas-hydrate deposits near wells A-06 and P-59 at levels near the predicted base of the hydrate stability zone.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. V407-V414
Author(s):  
Yanghua Wang ◽  
Xiwu Liu ◽  
Fengxia Gao ◽  
Ying Rao

The 3D seismic data in the prestack domain are contaminated by impulse noise. We have adopted a robust vector median filter (VMF) for attenuating the impulse noise from 3D seismic data cubes. The proposed filter has two attractive features. First, it is robust; the vector median that is the output of the filter not only has a minimum distance to all input data vectors, but it also has a high similarity to the original data vector. Second, it is structure adaptive; the filter is implemented following the local structure of coherent seismic events. The application of the robust and structure-adaptive VMF is demonstrated using an example data set acquired from an area with strong sedimentary rhythmites composed of steep-dipping thin layers. This robust filter significantly improves the signal-to-noise ratio of seismic data while preserving any discontinuity of reflections and maintaining the fidelity of amplitudes, which will facilitate the reservoir characterization that follows.


2020 ◽  
Vol 8 (2) ◽  
pp. T217-T229
Author(s):  
Yang Mu ◽  
John Castagna ◽  
Gabriel Gil

Sparse-layer reflectivity inversion decomposes a seismic trace into a limited number of simple layer responses and their corresponding reflection coefficients for top and base reflections. In contrast to sparse-spike inversion, the applied sparsity constraint is less biased against layer thickness and can thus better resolve thin subtuning layers. Application to a 3D seismic data set in Southern Alberta produces inverted impedances that have better temporal resolution and lateral stability and a less blocky appearance than sparse-spike inversion. Bandwidth extension harmonically extrapolated the frequency spectra of the inverted layers and nearly doubled the usable bandwidth. Although the prospective glauconitic sand tunes at approximately 37 m, bandwidth extension reduced the tuning thickness to 22 m. Bandwidth-extended data indicate a higher correlation with synthetic traces than the original seismic data and reveal features below the original tuning thickness. After bandwidth extension, the channel top and base are more evident on inline and crossline profiles. Lateral facies changes interpreted from the inverted acoustic impedance of the bandwidth-extended data are consistent with observations in wells.


Geophysics ◽  
2021 ◽  
pp. 1-36
Author(s):  
Haibin Di ◽  
Cen Li ◽  
Stewart Smith ◽  
Zhun Li ◽  
Aria Abubakar

With the expanding size of three-dimensional (3D) seismic data, manual seismic interpretation becomes time consuming and labor intensive. For automating this process, the recent progress in machine learning, particularly the convolutional neural networks (CNNs), has been introduced into the seismic community and successfully implemented for interpreting seismic structural and stratigraphic features. In principle, such automation aims at mimicking the intelligence of experienced seismic interpreters to annotate subsurface geology both accurately and efficiently. However, most of the implementations and applications are relatively simple in their CNN architectures, which primary rely on the seismic amplitude but undesirably fail to fully use the pre-known geologic knowledge and/or solid interpretational rules of an experienced interpreter who works on the same task. A general applicable framework is proposed for integrating a seismic interpretation CNN with such commonly-used knowledge and rules as constraints. Three example use cases, including relative geologic time-guided facies analysis, layer-customized fault detection, and fault-oriented stratigraphy mapping, are provided for both illustrating how one or more constraints can be technically imposed and demonstrating what added values such a constrained CNN can bring. It is concluded that the imposition of interpretational constraints is capable of improving CNN-assisted seismic interpretation and better assisting the tasks of subsurface mapping and modeling.


2016 ◽  
Vol 4 (1) ◽  
pp. SA25-SA37 ◽  
Author(s):  
Xiujuan Wang ◽  
Jin Qian ◽  
Timothy S. Collett ◽  
Hesheng Shi ◽  
Shengxiong Yang ◽  
...  

A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.


2020 ◽  
Author(s):  
David Cox ◽  
Andrew M. W. Newton ◽  
Paul C. Knutz ◽  
Mads Huuse

<p>A drilling hazard assessment has been completed for a large area of the NW Greenland-Baffin Bay continental shelf. This assessment was in relation to International Ocean Discovery Program (IODP) proposal 909 that aims to drill several sites across the shelf in an attempt to better understand the evolution and variability of the northern Greenland Ice Sheet. The assessment utilised high quality and extensive 3D seismic data that were acquired during recent hydrocarbon exploration interest in the area – a fact that highlights the risk of drilling in a petroleum province and therefore, the importance of this assessment with regards to safety.</p><p>Scattered seismic anomalies are observed within the Cenozoic sedimentary succession covering the rift basins of the Melville Bay region. These features, potentially representing the presence of free gas or gas-rich fluids, vary in nature from isolated anomalies, fault flags, stacked fluid flow features and canyons; all of which pose a significant drilling risk and were actively avoided during site selection. In areas above the Melville Bay Ridge – a feature that dominates the structure of this area – free gas is also observed trapped beneath extensive gas hydrate deposits, identified via a spectacularly imaged bottom simulating reflector marking the base of the gas hydrate stability zone. The location of the hydrate deposits, and the free gas beneath, are likely controlled by a complicated migration history, due to large scale rift-related faulting and migration along sandy aquifer horizons. In other areas, gas is interpreted to have reached the shallow subsurface due to secondary leakage from a deeper gas reservoir on the ridge crest.</p><p>It is clear that hydrocarbon related hazards within this area are varied and abundant, making it a more challenging location to select sites for an IODP drilling campaign. However, due to the extensive coverage and high resolution (up to 11 m vertical resolution (45 Hz at 2.0 km/s velocity) of the 3D seismic data available, as well as the use of recently acquired ultra-high resolution site survey lines, these features can be accurately imaged and confidently mapped. This allowed for the development of a detailed understanding of the character and distribution of fluids within the shallow subsurface, and the use of this knowledge to select site localities that maximise the potential for drilling to be completed safely and successfully if proposal 909 were to be executed.</p>


Sign in / Sign up

Export Citation Format

Share Document