Extension and normality of meromorphic mappings into complex projective varieties

2012 ◽  
Vol 104 (3) ◽  
pp. 279-292 ◽  
Author(s):  
Si Duc Quang
1977 ◽  
Vol 67 ◽  
pp. 165-176 ◽  
Author(s):  
Seiki Mori

Let f(z) be a non-degenerate meromorphic mapping of the n-dimensional complex Euclidean space Cn into the N-dimensional complex projective space PNC. A generalization of results of Edrei-Fuchs [2] for meromorphic mappings of C into PNC was given by Toda [5], and an estimate of K(λ) for meromorphic mappings of Cn into PNC was done by Noguchi [4]. In this note we generalize several results of Edrei-Fuchs [2] in the case of meromorphic mappings of Cn into PNC.


2013 ◽  
Vol 149 (3) ◽  
pp. 481-494 ◽  
Author(s):  
François Charles ◽  
Eyal Markman

AbstractWe prove the standard conjectures for complex projective varieties that are deformations of the Hilbert scheme of points on a K3 surface. The proof involves Verbitsky’s theory of hyperholomorphic sheaves and a study of the cohomology algebra of Hilbert schemes of K3 surfaces.


Author(s):  
Francesco Bei ◽  
Paolo Piazza

Abstract Let $(X,h)$ be a compact and irreducible Hermitian complex space. This paper is devoted to various questions concerning the analytic K-homology of $(X,h)$. In the 1st part, assuming either $\dim (\operatorname{sing}(X))=0$ or $\dim (X)=2$, we show that the rolled-up operator of the minimal $L^2$-$\overline{\partial }$ complex, denoted here $\overline{\eth }_{\textrm{rel}}$, induces a class in $K_0 (X)\equiv KK_0(C(X),\mathbb{C})$. A similar result, assuming $\dim (\operatorname{sing}(X))=0$, is proved also for $\overline{\eth }_{\textrm{abs}}$, the rolled-up operator of the maximal $L^2$-$\overline{\partial }$ complex. We then show that when $\dim (\operatorname{sing}(X))=0$ we have $[\overline{\eth }_{\textrm{rel}}]=\pi _*[\overline{\eth }_M]$ with $\pi :M\rightarrow X$ an arbitrary resolution and with $[\overline{\eth }_M]\in K_0 (M)$ the analytic K-homology class induced by $\overline{\partial }+\overline{\partial }^t$ on $M$. In the 2nd part of the paper we focus on complex projective varieties $(V,h)$ endowed with the Fubini–Study metric. First, assuming $\dim (V)\leq 2$, we compare the Baum–Fulton–MacPherson K-homology class of $V$ with the class defined analytically through the rolled-up operator of any $L^2$-$\overline{\partial }$ complex. We show that there is no $L^2$-$\overline{\partial }$ complex on $(\operatorname{reg}(V),h)$ whose rolled-up operator induces a K-homology class that equals the Baum–Fulton–MacPherson class. Finally in the last part of the paper we prove that under suitable assumptions on $V$ the push-forward of $[\overline{\eth }_{\textrm{rel}}]$ in the K-homology of the classifying space of the fundamental group of $V$ is a birational invariant.


2018 ◽  
Vol 154 (7) ◽  
pp. 1534-1570 ◽  
Author(s):  
Adrian Langer ◽  
Carlos Simpson

Let$X$be a smooth complex projective variety with basepoint$x$. We prove that every rigid integral irreducible representation$\unicode[STIX]{x1D70B}_{1}(X\!,x)\rightarrow \operatorname{SL}(3,\mathbb{C})$is of geometric origin, i.e., it comes from some family of smooth projective varieties. This partially generalizes an earlier result by Corlette and the second author in the rank 2 case and answers one of their questions.


Sign in / Sign up

Export Citation Format

Share Document