scholarly journals Trois couleurs: A new non-equational theory

2021 ◽  
Author(s):  
Amador Martin-Pizarro ◽  
Martin Ziegler
Keyword(s):  
2010 ◽  
Vol 4 (1) ◽  
pp. 81-105 ◽  
Author(s):  
ROBIN HIRSCH ◽  
SZABOLCS MIKULÁS

We prove that algebras of binary relations whose similarity type includes intersection, union, and one of the residuals of relation composition form a nonfinitely axiomatizable quasivariety and that the equational theory is not finitely based. We apply this result to the problem of the completeness of the positive fragment of relevance logic with respect to binary relations.


2000 ◽  
Vol 44 (1-2) ◽  
pp. 165-168 ◽  
Author(s):  
Christian Herrmann ◽  
Michael S. Roddy
Keyword(s):  

2008 ◽  
Vol 18 (3) ◽  
pp. 501-553 ◽  
Author(s):  
DAVID SABEL ◽  
MANFRED SCHMIDT-SCHAUSS

We present a higher-order call-by-need lambda calculus enriched with constructors, case expressions, recursive letrec expressions, a seq operator for sequential evaluation and a non-deterministic operator amb that is locally bottom-avoiding. We use a small-step operational semantics in the form of a single-step rewriting system that defines a (non-deterministic) normal-order reduction. This strategy can be made fair by adding resources for book-keeping. As equational theory, we use contextual equivalence (that is, terms are equal if, when plugged into any program context, their termination behaviour is the same), in which we use a combination of may- and must-convergence, which is appropriate for non-deterministic computations. We show that we can drop the fairness condition for equational reasoning, since the valid equations with respect to normal-order reduction are the same as for fair normal-order reduction. We develop a number of proof tools for proving correctness of program transformations. In particular, we prove a context lemma for both may- and must- convergence that restricts the number of contexts that need to be examined for proving contextual equivalence. Combining this with so-called complete sets of commuting and forking diagrams, we show that all the deterministic reduction rules and some additional transformations preserve contextual equivalence. We also prove a standardisation theorem for fair normal-order reduction. The structure of the ordering ≤c is also analysed, and we show that Ω is not a least element and ≤c already implies contextual equivalence with respect to may-convergence.


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Inna Mikhaylova

International audience Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational theory of the class of all finite epigroups and is decidable. We show that the theory is not finitely based but provide a transparent infinite basis for it.


1993 ◽  
Vol 30 (2) ◽  
pp. 275-284 ◽  
Author(s):  
J. Wick Pelletier ◽  
J. Rosick�
Keyword(s):  

2005 ◽  
Vol 197 (1-2) ◽  
pp. 55-89 ◽  
Author(s):  
Stephen L. Bloom ◽  
Zoltán Ésik
Keyword(s):  

2019 ◽  
Vol 29 (06) ◽  
pp. 909-925
Author(s):  
Z Ésik

AbstractSeveral fixed-point models share the equational properties of iteration theories, or iteration categories, which are cartesian categories equipped with a fixed point or dagger operation subject to certain axioms. After discussing some of the basic models, we provide equational bases for iteration categories and offer an analysis of the axioms. Although iteration categories have no finite base for their identities, there exist finitely based implicational theories that capture their equational theory. We exhibit several such systems. Then we enrich iteration categories with an additive structure and exhibit interesting cases where the interaction between the iteration category structure and the additive structure can be captured by a finite number of identities. This includes the iteration category of monotonic or continuous functions over complete lattices equipped with the least fixed-point operation and the binary supremum operation as addition, the categories of simulation, bisimulation, or language equivalence classes of processes, context-free languages, and others. Finally, we exhibit a finite equational system involving residuals, which is sound and complete for monotonic or continuous functions over complete lattices in the sense that it proves all of their identities involving the operations and constants of cartesian categories, the least fixed-point operation and binary supremum, but not involving residuals.


1992 ◽  
Vol 57 (3) ◽  
pp. 832-843 ◽  
Author(s):  
Balázs Biró

This paper deals with relation, cylindric and polyadic equality algebras. First of all it addresses a problem of B. Jónsson. He asked whether relation set algebras can be expanded by finitely many new operations in a “reasonable” way so that the class of these expansions would possess a finite equational base. The present paper gives a negative answer to this problem: Our main theorem states that whenever Rs+ is a class that consists of expansions of relation set algebras such that each operation of Rs+ is logical in Jónsson's sense, i.e., is the algebraic counterpart of some (derived) connective of first-order logic, then the equational theory of Rs+ has no finite axiom systems. Similar results are stated for the other classes mentioned above. As a corollary to this theorem we can solve a problem of Tarski and Givant [87], Namely, we claim that the valid formulas of certain languages cannot be axiomatized by a finite set of logical axiom schemes. At the same time we give a negative solution for a version of a problem of Henkin and Monk [74] (cf. also Monk [70] and Németi [89]).Throughout we use the terminology, notation and results of Henkin, Monk, Tarski [71] and [85]. We also use results of Maddux [89a].Notation. RA denotes the class of relation algebras, Rs denotes the class of relation set algebras and RRA is the class of representable relation algebras, i.e. the class of subdirect products of relation set algebras. The symbols RA, Rs and RRA abbreviate also the expressions relation algebra, relation set algebra and representable relation algebra, respectively.For any class C of similar algebras EqC is the set of identities that hold in C, while Eq1C is the set of those identities in EqC that contain at most one variable symbol. (We note that Henkin et al. [85] uses the symbol EqC in another sense.)


2001 ◽  
Vol 38 (1-4) ◽  
pp. 1-11 ◽  
Author(s):  
Hajnalka Andréka

We give a finite set of equations axiomatizing the class Gn of locally square cylindricrelativized set algebras of dimension n, if n is finite. For infinite n, we give an axiomatization of the equational theory of Gn. HereGn denotes the class of all cylindric-relativized set algebras of dimension n with unit a union of Cartesian spaces.


Sign in / Sign up

Export Citation Format

Share Document