axiom systems
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol volume 13, issue 2 ◽  
Author(s):  
Benjamin Fine ◽  
Anthony Gaglione ◽  
Martin Kreuzer ◽  
Gerhard Rosenberger ◽  
Dennis Spellman

In [FGRS1,FGRS2] the relationship between the universal and elementary theory of a group ring $R[G]$ and the corresponding universal and elementary theory of the associated group $G$ and ring $R$ was examined. Here we assume that $R$ is a commutative ring with identity $1 \ne 0$. Of course, these are relative to an appropriate logical language $L_0,L_1,L_2$ for groups, rings and group rings respectively. Axiom systems for these were provided in [FGRS1]. In [FGRS1] it was proved that if $R[G]$ is elementarily equivalent to $S[H]$ with respect to $L_{2}$, then simultaneously the group $G$ is elementarily equivalent to the group $H$ with respect to $L_{0}$, and the ring $R$ is elementarily equivalent to the ring $S$ with respect to $L_{1}$. We then let $F$ be a rank $2$ free group and $\mathbb{Z}$ be the ring of integers. Examining the universal theory of the free group ring ${\mathbb Z}[F]$ the hazy conjecture was made that the universal sentences true in ${\mathbb Z}[F]$ are precisely the universal sentences true in $F$ modified appropriately for group ring theory and the converse that the universal sentences true in $F$ are the universal sentences true in ${\mathbb Z}[F]$ modified appropriately for group theory. In this paper we show this conjecture to be true in terms of axiom systems for ${\mathbb Z}[F]$.


2021 ◽  
Author(s):  
◽  
Kadin Prideaux

<p>Matroids have a wide variety of distinct, cryptomorphic axiom systems that are capable of defining them. A common feature of these is that they are able to be efficiently tested, certifying whether a given input complies with such an axiom system in polynomial time. Joseph Bonin and Anna de Mier, rediscovering a theorem first proved by Julie Sims, developed an axiom system for matroids in terms of their cyclic flats and the ranks of those cyclic flats. As with other matroid axiom systems, this is able to be tested in polynomial time. Distinct, non-isomorphic matroids may each have the same lattice of cyclic flats, and so matroids cannot be defined solely in terms of their cyclic flats. We do not have a clean characterisation of families of sets that are cyclic flats of matroids. However, it may be possible to tell in polynomial time whether there is any matroid that has a given lattice of subsets as its cyclic flats. We use Bonin and de Mier’s cyclic flat axioms to reduce the problem to a linear program, and show that determining whether a given lattice is the lattice of cyclic flats of any matroid corresponds to finding integral points in the solution space of this program, these points representing the possible ranks that may be assigned to the cyclic flats. We distinguish several classes of lattice for which solutions may be efficiently found, based upon the nature of the matrix of coefficients of the linear program, and of the polyhedron it defines, and then identify families of lattice that belong to those classes. We define operations and transformations on lattices of sets by examining matroid operations, and examine how these operations affect membership in the aforementioned classes. We conjecture that it is always possible to determine, in polynomial time, whether a given collection of subsets makes up the lattice of cyclic flats of any matroid.</p>


2021 ◽  
Author(s):  
◽  
Kadin Prideaux

<p>Matroids have a wide variety of distinct, cryptomorphic axiom systems that are capable of defining them. A common feature of these is that they are able to be efficiently tested, certifying whether a given input complies with such an axiom system in polynomial time. Joseph Bonin and Anna de Mier, rediscovering a theorem first proved by Julie Sims, developed an axiom system for matroids in terms of their cyclic flats and the ranks of those cyclic flats. As with other matroid axiom systems, this is able to be tested in polynomial time. Distinct, non-isomorphic matroids may each have the same lattice of cyclic flats, and so matroids cannot be defined solely in terms of their cyclic flats. We do not have a clean characterisation of families of sets that are cyclic flats of matroids. However, it may be possible to tell in polynomial time whether there is any matroid that has a given lattice of subsets as its cyclic flats. We use Bonin and de Mier’s cyclic flat axioms to reduce the problem to a linear program, and show that determining whether a given lattice is the lattice of cyclic flats of any matroid corresponds to finding integral points in the solution space of this program, these points representing the possible ranks that may be assigned to the cyclic flats. We distinguish several classes of lattice for which solutions may be efficiently found, based upon the nature of the matrix of coefficients of the linear program, and of the polyhedron it defines, and then identify families of lattice that belong to those classes. We define operations and transformations on lattices of sets by examining matroid operations, and examine how these operations affect membership in the aforementioned classes. We conjecture that it is always possible to determine, in polynomial time, whether a given collection of subsets makes up the lattice of cyclic flats of any matroid.</p>


2021 ◽  
pp. 20-56
Author(s):  
A. J. Cotnoir ◽  
Achille C. Varzi

The aim of this chapter is to provide a comprehensive introduction to classical mereology. It examines this theory by providing a clear and perspicuousaxiom system that isolates several important elements of any mereological theory. The chapter examines, algebraic, and set-theoretic models of classical mereology, sketching proofs of their equivalence. The new axiom system facilitates algebraic comparisons, showing that models of these axioms are complete Boolean algebras without a bottom element. Then set-theoretic models are presented, and are shown to satisfy the axioms. The chapter explains the important relationship between models and powersets, and the role of Stone’s Representation Theorem in this connection. Finally, a number of significant rival axiom systems using different mereological primitives are introduced.


Author(s):  
Víctor Aranda

AbstractIn his Doppelvortrag (1901), Edmund Husserl introduced two concepts of “definiteness” which have been interpreted as a vindication of his role in the history of completeness. Some commentators defended that the meaning of these notions should be understood as categoricity, while other scholars believed that it is closer to syntactic completeness. A detailed study of the early twentieth-century axiomatics and Husserl’s Doppelvortrag shows, however, that many concepts of completeness were conflated as equivalent. Although “absolute definiteness” was principally an attempt to characterize non-extendible manifolds and axiom systems (different from Hilbert’s axiom of completeness), an absolutely definite theory has a unique model and, thus, it is non-forkable and semantically complete (decidable). Non-forkability and decidability were formally delimited by Fraenkel and Carnap almost three decades later and, in fact, they mentioned Husserl as precursor of the latter. Therefore, this paper contributes to a reassessment of Husserl’s place in the history of logic.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomasz Sadzik

Abstract Bayesian game theory investigates strategic interaction of players with full awareness but incomplete information about their environment. We extend the analysis to players with incomplete awareness, who might not be able to reason about all contingencies in the first place. We develop three logical systems for knowledge, probabilistic beliefs and awareness, and characterize their axiom systems. Bayesian equilibrium is extended to games with incomplete awareness and we show that it is consistent with common prior and speculative trade, when common knowledge of rationality is violated.


Author(s):  
I. Szalay ◽  
B. Szalay

Using the theory of exploded numbers by the axiom-systems of real numbers and Euclidean geometry, we explode the Euclidean plane. Exploding the Euclidean straight lines we get super straight lines. The extra straight line is the window phenomenon of super straight line. In general, the extra straight lines are curves in Euclidean sense, but they have more similar properties to Euclidean straight lines. On the other hand, with respect of parallelism we find a surprising property: there are detour straight lines.


2020 ◽  
Vol 5 (8) ◽  
pp. 904-914
Author(s):  
Istvan Szalay ◽  
Balazs Szalay

Using the theory of exploded numbers by the axiom-systems of real numbers and Euclidean geometry, we introduce concept of extra - plane of the three-dimensional space. The extra - planes are visible subsets of super-planes which are exploded Euclidean planes. We investigate the main properties of extra-planes. We prove more similar properties of Euclidean planes and extra-planes, but with respect the parllelism there is an essential difference among them.


Sign in / Sign up

Export Citation Format

Share Document