scholarly journals Iterated function systems with a weak separation condition

2004 ◽  
Vol 161 (3) ◽  
pp. 249-268 ◽  
Author(s):  
Ka-Sing Lau ◽  
Xiang-Yang Wang
2014 ◽  
Vol 36 (3) ◽  
pp. 890-907 ◽  
Author(s):  
SZE-MAN NGAI ◽  
JI-XI TONG

We formulate two natural but different extensions of the weak separation condition to infinite iterated function systems of conformal contractions with overlaps, and study the associated topological pressure functions. We obtain a formula for the Hausdorff dimension of the limit sets under these weak separation conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Chenwei Wang ◽  
Ercai Chen

Let{Si}i=1lbe a weakly conformal iterated function system onRdwith attractorK. Letπbe the canonical projection. In this paper we define a new concept called “projection pressure”Pπ(φ)forφ∈C(Σ)and show the variational principle about the projection pressure under AWSC. Furthermore, we check that the zero of “projection pressure” still satisfies Bowen's equation. Using the root of Bowen's equation, we can get the Hausdorff dimension of the attractorK.


2016 ◽  
Vol 38 (4) ◽  
pp. 1353-1368 ◽  
Author(s):  
QI-RONG DENG ◽  
XIANG-YANG WANG

For a self-similar or self-affine iterated function system (IFS), let$\unicode[STIX]{x1D707}$be the self-similar or self-affine measure and$K$be the self-similar or self-affine set. Assume that the IFS satisfies the weak separation condition and$K$is totally disconnected; then, by using the technique of neighborhood decomposition, we prove that there is a neighborhood$\unicode[STIX]{x1D6FA}$of the identity map Id such that$\sup \{\unicode[STIX]{x1D707}(g(K)\cap K):g\in \unicode[STIX]{x1D6FA}\setminus \{\text{Id}\}\}<1$.


Author(s):  
Balázs Bárány ◽  
Károly Simon ◽  
István Kolossváry ◽  
Michał Rams

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.


2016 ◽  
Vol 160 (3) ◽  
pp. 537-563 ◽  
Author(s):  
MARIUSZ URBAŃSKI ◽  
ANNA ZDUNIK

AbstractWe deal with the question of continuity of numerical values of Hausdorff measures in parametrised families of linear (similarity) and conformal dynamical systems by developing the pioneering work of Lars Olsen and the work [SUZ]. We prove Hölder continuity of the function ascribing to a parameter the numerical value of the Hausdorff measure of either the corresponding limit set or the corresponding Julia set. We consider three cases. Firstly, we consider the case of parametrised families of conformal iterated function systems in $\mathbb{R}$k with k ⩾ 3. Secondly, we consider all linear iterated function systems consisting of similarities in $\mathbb{R}$k with k ⩾ 1. In either of these two cases, the strong separation condition is assumed. In the latter case the Hölder exponent obtained is equal to 1/2. Thirdly, we prove such Hölder continuity for analytic families of conformal expanding repellers in the complex plane $\mathbb{C}$. Furthermore, we prove the Hausdorff measure function to be piecewise real–analytic for families of naturally parametrised linear IFSs in $\mathbb{R}$ satisfying the strong separation condition. On the other hand, we also give an example of a family of linear IFSs in $\mathbb{R}$ for which this function is not even differentiable at some parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qi-Rong Deng ◽  
Sze-Man Ngai

On the class of iterated function systems of bi-Lipschitz mappings that are contractions with respect to some metrics, we introduce a logarithmic distortion property, which is weaker than the well-known bounded distortion property. By assuming this property, we prove the equality of the Hausdorff and box dimensions of the attractor. We also obtain a formula for the dimension of the attractor in terms of certain modified topological pressure functions, without imposing any separation condition. As an application, we prove the equality of Hausdorff and box dimensions for certain iterated function systems consisting of affine maps and nonsmooth maps.


Sign in / Sign up

Export Citation Format

Share Document