scholarly journals Acute toxicity of lethal and sublethal concentrations of neonicotinoid, insect growth regulator and diamide insecticides on natural enemies of the woolly apple aphid and the obscure mealybug

2021 ◽  
Vol 81 (3) ◽  
pp. 398-407
Author(s):  
Catalina Radrigán-Navarro ◽  
Elizabeth H. Beers ◽  
Andrés Alvear ◽  
Eduardo Fuentes-Contreras
2014 ◽  
Author(s):  
Elad Chiel ◽  
Christopher J. Geden

House flies (Muscadomestica) are global pests of animal agriculture, causing major annoyance, carrying pathogens among production facilities and humans and thus have profound impacts on animal comfort and productivity. Successful fly control requires an integrated pest management (IPM) approach that includes elements of manure management, mass trapping, biological control, and selective insecticide use. Insecticidal control of house flies has become increasingly difficult due to the rapidity with which resistance develops, even to new active ingredients. Global climate change poses additional challenges, as the efficacy of natural enemies is uncertain under the higher temperatures that are predicted to become more commonplace in the future. The two major objectives of this research project were: 1) to develop a cost-effective autodissemination application method of Pyriproxifen (PPF), an insect growth regulator, for controlling house flies; 2) to study the effect of increasing temperatures on the interactions between house flies and their principal natural enemies. First, we collected several wild house fly populations in both countries and established that most of them are susceptible to PPF, although one population in each country showed initial signs of PPF-resistance. An important finding is that the efficacy of PPF is substantially reduced when applied in cows’ manure. We also found that PPF is compatible with several common species of parasitoids that attack the house fly, thus PPF can be used in IPM programs. Next, we tried to develop “baited stations” in which house flies will collect PPF on their bodies and then deliver and deposit it in their oviposition sites (= autodissemination). The concept showed potential in lab experiments and in outdoor cages trials, but under field conditions the station models we tested were not effective enough. We thus tested a somewhat different approach – to actively release a small proportion of PPF-treated flies. This approach showed positive results in laboratory experiments and awaits further field experiments. On the second topic, we performed two experimental sets: 1) we collected house flies and their parasitoids from hot temperature and mild temperature areas in both countries and, by measuring some fitness parameters we tested whether the ones collected from hot areas are better adapted to BARD Report - Project 4701 Page 2 of 16 heat. The results showed very little differences between the populations, both of flies and parasitoids. 2) A “fast evolution” experiment, in which we reared house flies for 20 generations under increasing temperatures. Also here, we found no evidence for heat adaptation. In summary, pyriproxyfen proved to be a highly effective insect growth regulator for house flies that is compatible with it’s natural enemies. Although our autodissemination stations yielded disappointing results, we documented the proportion of flies in a population that must be exposed to PPF to achieve effective fly control. Both the flies and their principal parasitoids show no evidence for local adaptation to high temperatures. This is an encouraging finding for biological control, as our hypothesis was that the fly would be adapting faster to high temperatures than the parasitoids. BARD Report - Project 4701 Page 3 of 16 


1975 ◽  
Vol 5 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Gary B. Quistad ◽  
Luana E. Staiger ◽  
David A. Schooley

2009 ◽  
Vol 38 (2) ◽  
pp. 493-498 ◽  
Author(s):  
Elina L. Niño ◽  
Clyde E. Sorenson ◽  
Steven P. Washburn ◽  
D. Wes Watson

Sign in / Sign up

Export Citation Format

Share Document