subterranean termite
Recently Published Documents


TOTAL DOCUMENTS

646
(FIVE YEARS 95)

H-INDEX

35
(FIVE YEARS 3)

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1109
Author(s):  
Kieu Ngo ◽  
Paula Castillo ◽  
Roger A. Laine ◽  
Qian Sun

The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a highly destructive pest and a cosmopolitan invasive species. Sustainable termite management methods have been improving with the search for novel insecticides that are effective, safe, and cost efficient. Menadione, also known as vitamin K3, is a synthetic analogue and biosynthetic precursor of vitamin K with low mammalian toxicity. Menadione has shown insecticidal activity in several insects, presumably due to interference with mitochondrial oxidative phosphorylation. However, little is known about its effectiveness against termites. In this study, we evaluated the toxicity and repellency of menadione in C. formosanus. Our results showed that menadione affected the survival and feeding activity of termites both in filter paper and substrate (sand) treatments, and menadione influenced termite tunneling activity in treated sand. In a no-choice assay, ≥90% mortality after seven days and minimal or no food consumption were recorded when sand was treated with menadione at 6 to 600 ppm. In a two-choice assay with a combination of treated and untreated sand, termites were deterred by menadione at 6 to 600 ppm and exhibited low mortality (≤30%) over seven days, while tunneling activity was prevented with 60 to 600 ppm of menadione treatment. Overall, our study demonstrated dose-dependent toxicity and repellency of menadione in C. formosanus. The potential use of menadione as an alternative termite control agent is discussed.


2021 ◽  
Vol 13 (23) ◽  
pp. 13360
Author(s):  
Ying Li ◽  
Dong-Zi Pan

Subterranean termite-induced damage to earth embankments in agricultural systems occurs globally. NaCl-laden soil barriers (NLSBs) are an environmentally sustainable termite control method, and have exhibited good potential in preventing termite-related tunneling damage in Zhejiang Province, China. The persistence of the NaCl concentration in NLSBs is a key characteristic for the long-term prevention of subterranean termite infestations. This study is a scientific attempt to estimate the field efficacy and barrier longevity of NLSBs in reservoir embankments based on the Richards equation and the convection–dispersion equation using HYDRUS (2D/3D). The observed and simulated NaCl concentrations at the end of a 1915-day simulation were compared. The results indicated that the proposed model performed well and can effectively characterize the water flow and salt transport in NLSBs. The salt desalination rate of the NLSB in the upstream slope was higher than that in the downstream slope, both of which were significantly higher than that at the embankment axis. Regardless of the type of embankment (homogeneous or core-wall), the barrier longevity of NaCl-laden soil against subterranean termites can reach 50 years with an optimized NaCl/soil ratio in different parts of the embankment.


Ecosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Angela Myer ◽  
Mark H. Myer ◽  
Carl C. Trettin ◽  
Brian T. Forschler

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Sang-Bin Lee ◽  
Thomas Chouvenc ◽  
Nan-Yao Su

Abstract Background Foraging in group living animals such as social insects, is collectively performed by individuals. However, our understanding on foraging behavior of subterranean termites is extremely limited, as the process of foraging in the field is mostly concealed. Because of this limitation, foraging behaviors of subterranean termites were indirectly investigated in the laboratory through tunnel geometry analysis and observations on tunneling behaviors. In this study, we tracked subsets of foraging workers from juvenile colonies of Coptotermes formosanus (2-yr-old) to describe general foraging behavioral sequences and to find how foraging workers allocate time between the foraging site (food acquisition or processing) and non-foraging site (food transportation). Results Once workers entered into the foraging site, they spent, on average, a significantly longer time at the foraging site than the non-foraging site. Our clustering analysis revealed two different types of foraging workers in the subterranean termite based on the duration of time they spent at the foraging site and their foraging frequency. After entering the foraging site, some workers (cluster 1) immediately initiated masticating wood fragments, which they transferred as food boluses to recipient workers at the foraging site. Conversely, the recipient workers (cluster 2) moved around after entering the foraging site and received food from donating workers. Conclusions This study provides evidence of task specialization within foraging cohorts in subterranean termites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron Mullins ◽  
Thomas Chouvenc ◽  
Nan-Yao Su

AbstractIntrinsic dinitrogen (N2) fixation by diazotrophic bacteria in termite hindguts has been considered an important pathway for nitrogen acquisition in termites. However, studies that supported this claim focused on measuring instant N2 fixation rates and failed to address their relationship with termite colony growth and reproduction over time. We here argue that not all wood-feeding termites rely on symbiotic diazotrophic bacteria for colony growth. The present study looks at dietary nitrogen acquisition in a subterranean termite (Rhinotermitidae, Coptotermes). Young termite colonies reared with wood and nitrogen-rich organic soil developed faster, compared to those reared on wood and inorganic sand. More critically, further colony development was arrested if access to organic soil was removed. In addition, no difference of relative nitrogenase expression rates was found when comparing the hindguts of termites reared between the two conditions. We therefore propose that subterranean termite (Rhinotermitidae) colony growth is no longer restricted to metabolically expensive intrinsic N2 fixation, as the relationship between diazotrophic bacteria and subterranean termites may primarily be trophic rather than symbiotic. Such reliance of Rhinotermitidae on soil microbial decomposition activity for optimal colony growth may also have had a critical mechanistic role in the initial emergence of Termitidae.


F1000Research ◽  
2021 ◽  
Vol 6 ◽  
pp. 2082
Author(s):  
Xianfa Xie ◽  
Alonzo B. Anderson ◽  
Latoya J. Wran ◽  
Myrna G. Serrano ◽  
Gregory A. Buck

Background: While there have been a lot of studies on the termite gut microbiota, there has been very little research directly on the cellulose-degrading microbiota in termites or their soil environment. This study addresses this problem by profiling cellulose-degrading bacteria and archaea in the selective cellulose cultures of two samples of the eastern subterranean termite (Reticulitermes flavipes) and one soil sample collected at the same location as one of the termite samples. Methods: All the cultures were examined for cell concentration and remaining cellulose after the culture was completed. The 16S rRNA pyrotag sequencing method was used to identify the prokaryotic microbiota for the three cultures and one termite colony without culture. The MOTHUR, SSU-ALIGN, RDPTools, phyloseq, and other R packages were used for sequence and statistical analyses. Results: Biochemical analyses of the cultures suggested high efficiency of cellulose degradation. Comparative analyses between the cultured and uncultured termite gut microbiota revealed a significant difference. Proteobacteria and Firmicutes were found to be the two most abundant phyla of cellulose-degrading bacteria from the three cultures, but different classes within each phylum dominated the different samples. Shared and sample-specific cellulose-degrading taxa, including a core set of taxa across all the cultures, were identified. Conclusions: Our study demonstrates the importance of using selective cellulose culture to study the cellulose-degrading microbial community. It also revealed that the cellulose-degrading microbiota in the eastern subterranean termite is significantly influenced by the microbiota in the surrounding soil environment. Biochemical analyses showed that the microbial communities enriched from all the selective cultures were efficient in degrading cellulose, and a core set of bacteria have been identified as targets for further functional analyses.


2021 ◽  
Author(s):  
Shuji Shigenobu ◽  
Yoshinobu Hayashi ◽  
Dai Watanabe ◽  
Gaku Tokuda ◽  
Masaru Y Hojo ◽  
...  

Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing an intermediate taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome and methylome of the Japanese subterranean termite Reticulitermes speratus. The analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression is prevalent in the R. speratus genome. Such duplicated genes encompass diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense) and a novel class of termite lineage-specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but the expression patterns were highly variable, exhibiting caste biases. Some duplicated genes assayed were expressed in caste-specific organs, such as the accessory glands of the queen ovary and frontal glands in soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification leading to caste-biased expression and subfunctionalization and/or neofunctionalization that confers caste-specialized functions.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 900
Author(s):  
Yusuf Sudo Hadi ◽  
Deded Sarip Nawawi ◽  
Imam Busyra Abdillah ◽  
Gustan Pari ◽  
Rohmah Pari

The discoloration and resistance to subterranean termite attack of four furfurylated fast-growing tropical wood species were evaluated after outdoor exposure for 1 year in Bogor, Indonesia. For comparison purposes, imidacloprid-preserved and untreated wood samples were also prepared. Discoloration of all treated samples was measured before and after the furfurylation process. The wood specimens were then placed vertically to three-fourths of their length in the ground for 1 year, at which point they were evaluated for resistance to subterranean termite attack. After furfurylation, wood samples were darker in color than untreated wood, while imidacloprid-preserved wood was lighter. After 1-year exposure, furfurylated wood samples appeared to have the highest resistance to subterranean termite attack. These samples had minimal weight loss, indicating a substantial protection level. Imidacloprid-preserved wood had less resistance to termite attack, but was more resistant than untreated wood.


Sign in / Sign up

Export Citation Format

Share Document