natural enemies
Recently Published Documents


TOTAL DOCUMENTS

3166
(FIVE YEARS 711)

H-INDEX

88
(FIVE YEARS 9)

2023 ◽  
Vol 83 ◽  
Author(s):  
G. N. Gomes ◽  
G. L. D. Leite ◽  
M. A. Soares ◽  
R. E. M. Guanãbens ◽  
P. G. Lemes ◽  
...  

Abstract Acacia mangium (Willd., 1806) (Fabales: Fabaceae) is a fast growing, rustic, pioneer species, with potential to fix nitrogen, and for programs to recover degraded areas. The objective was to evaluate the distribution and the functional diversity of interactions and the K-dominance of arthropod groups on A. mangium saplings. The number of individuals of eleven species of phytophagous insects, three bee species, and fourteen natural enemy species were highest on the adaxial leaf surface of this plant. Abundance, diversity and species richness of phytophagous insects and natural enemies, and abundance and species richness of pollinators were highest on the adaxial A. mangium leaf surface. The distribution of five species of sap-sucking hemipterans and six of protocooperating ants (Hymenoptera), with positive interaction between these groups, and three bee species (Hymenoptera) were aggregated on leaves of A. mangium saplings. Aethalion reticulatum (L.) (Hemiptera: Aethalionidae) and Bemisia sp. (Hemiptera: Aleyrodidae); Brachymyrmex sp. and Camponotus sp. (Hymenoptera: Formicidae); and Trigona spinipes Fabricius (Hymenoptera: Apidae) were the most dominant phytophagous insects, natural enemies, and pollinators, respectively, on A. mangium leaves. Knowledge of preferred leaf surfaces could help integrated pest management programs.


2024 ◽  
Vol 84 ◽  
Author(s):  
G. L. Demolin-Leite

Abstract Indices are used to help on decision-making. This study aims to develop and test an index, which can determine the loss (e.g., herbivorous insects) and solution (e.g., natural enemies) sources. They will be classified according to their importance regarding the ability to damage or to reduce the source of damage to the system when the final production is unknown. Acacia auriculiformis (Fabales: Fabaceae), a non-native pioneer species in Brazil with fast growth and rusticity, is used in restoration programs, and it is adequate to evaluate a new index. The formula was: Percentage of the Importance Indice-Production Unknown (% I.I.-PU) = [(ks1 x c1 x ds1)/Σ (ks1 x c1 x ds1) + (ks2 x c2 x ds2) + (ksn x cn x dsn)] x 100. The loss sources Aethalion reticulatum L., 1767 (Hemiptera: Aethalionidae), Aleyrodidae (Hemiptera), Stereoma anchoralis Lacordaire, 1848 (Coleoptera: Chrysomelidae), and Tettigoniidae, and solution sources Uspachus sp. (Araneae: Salticidae), Salticidae (Araneae), and Pseudomyrmex termitarius (Smith, 1877) (Hymenoptera: Formicidae) showed the highest % I.I.-PU on leaves of A. auriculiformis saplings. The number of Diabrotica speciosa Germar, 1824 (Coleoptera: Chrysomelidae) was reduced per number of Salticidae; that of A. reticulatum that of Uspachus sp.; and that of Cephalocoema sp. (Orthoptera: Proscopiidae) that of P. termitarius on A. auriculiformis saplings. However, the number of Aleyrodidae was increased per number of Cephalotes sp. (Hymenoptera: Formicidae) and that of A. reticulatum that of Brachymyrmex sp. (Hymenoptera: Formicidae) on A. auriculiformis saplings. The A. reticulatum damage was reduced per number of Uspachus sp., but the Aleyrodidae damage was increased per number of Cephalotes sp., totaling 23.81% of increase by insect damages on A. auriculiformis saplings. Here I show and test the % I.I.-PU. It is an new index that can detect the loss or solution sources on a system when production is unknown. It can be applied in some knowledge areas.


Author(s):  
Ritesh Mishra ◽  
Hara Prasad Mishra ◽  
Sophia Subhadarsini Pradhan ◽  
Govindharaj Guru-Pirasanna-Pandi ◽  
Gadratagi Basana Gowda ◽  
...  

2022 ◽  
Author(s):  
Gemma María Clemente-Orta ◽  
Hugo Alejandro Álvarez ◽  
Filipe Madeira ◽  
Ramon Albajes

Knowledge of the specific insect densities during crop development is necessary to perform appropriate measures for the control of insect pests and to minimize yield losses. In a previous study, both spatial and temporal approaches were adopted to analyse the influence of landscape structure and field variables on herbivore and predatory insects on maize. Both types of variables influenced insect abundance, but the highest effect was found with maize phenology. Given that the field planting date could modulate the influence produced by the structure of the landscape on herbivores and predatory insects, analyses of population dynamics must be performed at both the local and landscape levels. The anterior prompted us to study these aspects in the two common planting periods (early and late) in northern Spain. The present study tests the hypothesis that the period of maize planting could have a higher effect than phenology or interannual variation on the abundance of natural enemies and herbivores on maize. Our results showed that only the abundances of other herbivore thrips and Syrphidae were significantly different between the two planting periods. Moreover, we found significant effects of planting period when we performed yearly analysis in 2015 for Coccinellidae and Chrysopidae and in 2016 and 2017 for Aeolothrips sp. Most of the taxa had abundance peaks in earlier growth stages, which are related to pollination (before or during), while only Stethorus punctillum and Syrphidae increased later in the season. Furthermore, Frankliniella occidentalis, aphids, Syrphidae and Coccinellidae registered higher abundances in fields sown in the late planting period than in the rest of the insect species. The results of the present study highlight the effects of sowing dates on insect dynamics in maize.


2022 ◽  
Vol 951 (1) ◽  
pp. 012108
Author(s):  
H Husni ◽  
J Jauharlina ◽  
M Sayuthi ◽  
E Mulyadi ◽  
P Yulianda ◽  
...  

Abstract A study has been conducted for 3 consecutive years since 2019 to 2021 to investigate the influence of cultivation system of Arabica coffee against the attack of the coffee berry borer (Hypothenemus hampei Ferr.) in Arabica coffee plantations in Aceh Tengah District, Aceh Province, Indonesia. We observed the attack level of H. hampei on Arabica coffee plants that were cultivated both organically and conventionally. The results showed that for three years observation, in general, the attack level of coffee berry borer (CBB) on organic and conventional coffee plantations was not significantly different. Observations in 2019 showed that the attack level of CBB on organic coffee plantations ranged from 27-34 % and on conventional coffee plantations ranging from 33-49 %. Observations in 2020 showed that the attack rate of CBB on organic and conventional coffee ranged from 20-40 % and 28-41%, respectively, while observations in 2021 were 25-26 % and 27-28 %. The results of these studies indicate that the level of CBB attack on organic coffee plantations is no different from conventional coffee plantations that routinely use synthetic pesticides. This indicates that in organic coffee plantations, natural enemies have played an important role in suppressing the development of CBB populations. Although the use of synthetic pesticides in conventional coffee plantations can suppress pest populations, it is suspected that these pesticides also play a role in reducing the population of natural enemies of pests. Therefore, organic coffee cultivation is much more profitable, especially it can reduce the cost of buying synthetic pesticides and fertilizers, besides ensuring the safety of coffee farmers, workers, and consumers from harmful chemical contamination from pesticides.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Ussawit Srisakrapikoop ◽  
Tara J Pirie ◽  
Mark D E Fellowes

Abstract Urbanization can change interactions in insect communities, and the few studies of tritrophic interactions in urban settings focus on interactions between plants, herbivorous insects and their mutualists and natural enemies. Plant pathogen infection is also widespread and common, and infection may also alter such interactions, but we have no understanding of whether the ecological consequences of pathogen infection vary with urbanization. Using replicated aphid colonies on experimental plants, we investigated how infection by the plant pathogen Botrytis cinerea influences interactions between plants, aphids and the aphid natural enemies and ant mutualists in highly urbanized, suburban and rural study sites. Aphid and natural enemy abundance were highest in the suburban site, while mutualist ants were most abundant in the urban site, reversing the usual positive density-dependent relationship between natural enemies and aphids. The effect of pathogen infection varied with trait and site, mediated by natural enemy preference for hosts or prey on uninfected plants. The effect of infection on aphid abundance was only seen in the suburban site, where natural enemies were most abundant on uninfected plants and aphid numbers were greatest on infected plants. In the urban site, there was no effect of infection, while in the rural site, aphid numbers were lower on infected plants. Uninfected plants were smaller than infected plants and differed between locations. This study suggests that the effects of urbanization on ecological interactions may become more complex and difficult to predict as we study ecological assemblages and communities at greater levels of structural complexity.


2022 ◽  
Vol 82 ◽  
Author(s):  
M. S. Rocha ◽  
P. T. Nascimento ◽  
B. L. F. Santos ◽  
M. A. M. Fadini

Abstract Among the plants defense mechanisms, the induction and emission of volatile organic compounds, which can be used to attract natural enemies, such predators insects. Although well studied, the induction of plant volatiles that attract natural enemies can vary according to intensity of infestation of herbivores and the species of host plant. We investigated the olfactory behavioral responses of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) to the volatiles of infested maize (Zea mays) plants by the two-spotted spider mite Tetranychus urticae (Koch, 1836) (Acari: Tetranychidae) in early and advanced infestations. The Bt (Viptera) maize cultivar Impact® was used for tests the behavior of N. californicus. After initial and advanced infestations, the phytophagous mites T. urticae were removed, and the plants were tested using a “Y” olfactometer. The following treatments were evaluated: air vs. air, uninfested plants vs. air, uninfested plants vs. plants infested with 10 females of T. urticae, uninfested plants vs. plants infested with 100 females of T. urticae, uninfested plants vs. plants infested with 200 females of T. urticae and plants infested with 10 vs. plants infested with 200 females of T. urticae. The predatory mite N. californicus did not show preference to the treatments tested, suggesting that maize plants infested by T. urticae do not induce volatiles capable of attracting the predatory mite N. californicus. We concluded that N. californicus is not attracted by maize plants infested by T. urticae.


Sign in / Sign up

Export Citation Format

Share Document