scholarly journals Decomposition, contribution and soil organic matter balances of crop residues and vermicompost in maize-based cropping systems in southwest Mexico

Author(s):  
D Flores-Sanchez ◽  
A Pastor ◽  
W.A.H Rossing ◽  
M.J Kropff ◽  
E. A Lantinga
2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


2019 ◽  
Vol 16 (14) ◽  
pp. 2795-2819 ◽  
Author(s):  
Sissel Hansen ◽  
Randi Berland Frøseth ◽  
Maria Stenberg ◽  
Jarosław Stalenga ◽  
Jørgen E. Olesen ◽  
...  

Abstract. The emissions of nitrous oxide (N2O) and leaching of nitrate (NO3) from agricultural cropping systems have considerable negative impacts on climate and the environment. Although these environmental burdens are less per unit area in organic than in non-organic production on average, they are roughly similar per unit of product. If organic farming is to maintain its goal of being environmentally friendly, these loadings must be addressed. We discuss the impact of possible drivers of N2O emissions and NO3 leaching within organic arable farming practice under European climatic conditions, and potential strategies to reduce these. Organic arable crop rotations are generally diverse with the frequent use of legumes, intercropping and organic fertilisers. The soil organic matter content and the share of active organic matter, soil structure, microbial and faunal activity are higher in such diverse rotations, and the yields are lower, than in non-organic arable cropping systems based on less diverse systems and inorganic fertilisers. Soil mineral nitrogen (SMN), N2O emissions and NO3 leaching are low under growing crops, but there is the potential for SMN accumulation and losses after crop termination, harvest or senescence. The risk of high N2O fluxes increases when large amounts of herbage or organic fertilisers with readily available nitrogen (N) and degradable carbon are incorporated into the soil or left on the surface. Freezing/thawing, drying/rewetting, compacted and/or wet soil and mechanical mixing of crop residues into the soil further enhance the risk of high N2O fluxes. N derived from soil organic matter (background emissions) does, however, seem to be the most important driver for N2O emission from organic arable crop rotations, and the correlation between yearly total N-input and N2O emissions is weak. Incorporation of N-rich plant residues or mechanical weeding followed by bare fallow conditions increases the risk of NO3 leaching. In contrast, strategic use of deep-rooted crops with long growing seasons or effective cover crops in the rotation reduces NO3 leaching risk. Enhanced recycling of herbage from green manures, crop residues and cover crops through biogas or composting may increase N efficiency and reduce N2O emissions and NO3 leaching. Mixtures of legumes (e.g. clover or vetch) and non-legumes (e.g. grasses or Brassica species) are as efficient cover crops for reducing NO3 leaching as monocultures of non-legume species. Continued regular use of cover crops has the potential to reduce NO3 leaching and enhance soil organic matter but may enhance N2O emissions. There is a need to optimise the use of crops and cover crops to enhance the synchrony of mineralisation with crop N uptake to enhance crop productivity, and this will concurrently reduce the long-term risks of NO3 leaching and N2O emissions.


2017 ◽  
Vol 111 ◽  
pp. 44-59 ◽  
Author(s):  
Hugues Clivot ◽  
Bruno Mary ◽  
Matthieu Valé ◽  
Jean-Pierre Cohan ◽  
Luc Champolivier ◽  
...  

2022 ◽  
Vol 216 ◽  
pp. 105229
Author(s):  
José Miguel Reichert ◽  
Adão Leonel Corcini ◽  
Gabriel Oladele Awe ◽  
Dalvan José Reinert ◽  
Jackson Adriano Albuquerque ◽  
...  

2010 ◽  
Vol 74 (4) ◽  
pp. 1320-1326 ◽  
Author(s):  
Baokun Lei ◽  
Mingsheng Fan ◽  
Qing Chen ◽  
Johan Six ◽  
Fusuo Zhang

2012 ◽  
Vol 7 (3) ◽  
pp. 38 ◽  
Author(s):  
Elisa Marraccini ◽  
Marta Debolini ◽  
Claudia Di Bene ◽  
Hélène Rapey ◽  
Enrico Bonari

Sign in / Sign up

Export Citation Format

Share Document