scholarly journals DISTRICT-WISE CHANGE ANALYSIS OF LAND USE-LAND COVER IN DELHI TERRITORY USING REMOTE SENSING & GIS

2016 ◽  
Vol 10 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Surya Pattanayak ◽  
Sumant Diwakar
Author(s):  
Amanuel Kumsa ◽  
Professor Sileshi Nemomissa ◽  
Asmamaw (PhD) Legas ◽  
Dessalegn Gurmessa

Wetlands are one of the crucial natural resources. They provide invaluable biodiversity resources, aid in water quality improvement, support ground water recharge, help in moderating climate change and support flood control. Environment is in the other hand, where we live and something, we are very familiar with our day to day life. Geographic Information Systems (GIS), Remote Sensing and Global Positioning System (GPS) were a useful tool for wetland and environmental change analysis and to improve on the classification accuracy. This study investigates population and environmental change of Jarmet wetland and its surrounding area change analysis over the period of 1972 to 2015. The purpose of this study was to show land use/ land cover change of Jarmet wetland and its surrounding environment over years as a response to population growth. For this purpose, multi-temporal satellite imageries (Landsat MSS 1972, TM1986, ETM+ 2000, 2005 and 2015 and SRTM 2000) were obtained and used for LULC change analysis, elevation analysis and change detection analysis. ERDAS Imagine 2015, ARC GIS 10.5.1, Global Mapper11, ENVI 5.0 and DNR Garmin softwares were used to process the image data and accuracy assessment analysis. The result of LULC showed that there is spatial reduction in wetland, forest, Shrubland and grassland in the period of 43 years (1972-2015) by -1,722.8 ha, -296.2 ha, -1,718.7 ha and -661.9 ha respectively, due to increase in the farmland and plantation area as a response to overpopulation, lack of environmental policy implementation and irresponsible for natural resource degradation. The accuracy assessment of LULC change are done for recent satellite image showed the overall accuracy of 84.06% with Kappa index 75.19% this means this classification is accurately classified and handle greater than 75% of error. Finally, this study suggests that create strictly natural resource conservation law, stopping illegal expansion of farmland, educating society about the value of natural resource especially wetland and create a source of income for society rather than farming.


Land use/Land cover (LU/LC) change analysis is the present-day challenging task for the researchers in defining the environmental change across the world in the field of remote sensing and GIS (Geographic Information System). This paper analyzes the LU/LC changes between the years 2009 and 2019 in the region of Javadi Hills located in Tamil Nadu, India. Images from the Indian remote sensing satellite Resourcesat-1 LISS III and American earth observation satellite Landsat-8 were used for analyzing the LU/LC change for the study area. In this work, the classification was performed by using the hybrid approach of unsupervised and supervised classifiers. The classified LU/LC map for the study area defines forest and non-forest covered region. The key objective of this work was to identify the percentage of LU/LC change occurred in our study area for the years 2009 to 2014 and 2014 to 2019. Observing and examining the changes occurred in the study area provides a clear view to the land resources management to take effective measures in protecting the environment.


2017 ◽  
Vol 10 (2) ◽  
pp. 201-213
Author(s):  
Surya Prakash Pattanayak ◽  
Sumant Kumar Diwakar

Digital change detection is the process that helps in determining the changes associated with Land use and Land cover properties with reference to geo-referenced multi-temporal remote sensing data. It helps in identifying change between two or more dates that is uncharacterized of normal variation. This work is an attempt to assess the district-wise changes in land use/land cover in Delhi, India. The study made use of LISS -III imageries of 2008 and 2012 year. The images were classified using Maximum Likelihood classification method. The output can be useful in many applications such as Land use changes, habitat fragmentation, rate of deforestation, urban sprawl and other cumulative changes through spatial and temporal analysis. The study shows that Delhi land cover from 2008 to 2012 a major rapid changes in the landscape as there is high growth in the fallow and built up area. Agriculture land and forest area has reduced marginally and water body is showing almost stagnant condition over time.


Author(s):  
S. Ravichandran ◽  
I. K. Manonmani

Land use / Land cover change is one of the most sensitive factors that show the interactions between human activities and the ecological environment. This research study demonstrated the importance of geographical information system and remote sensing technologies in spatial temporal data analysis and also this paper shows a GIS and remote sensing approach for modeling of spatial - temporal pattern of land use and land cover change (LULC) in a fastest growing towns / industrial region of Karur town. QGIS 3.10 version and Arc GIS 10.2 software platforms were utilized in the study for Image processing, LULC mapping and change detection analysis. USGS Earth explorer Landsat series satellite imageries were acquired and LULC maps were prepared for the years 1991, 2000, 2010 and 2020. Supervised classification with maximum likelihood algorithm is adopted for LULC classification. The LULC classes are Built upland, Agricultural land, Barren land and Water body based on NRSA Level – I supervised classification. The Built-up area has drastically increased from 1991 to 2020. It has increased more than double. It was 17 percent in 1991 and increased to 40 percent in 2020. This clearly shows Karur town is the becoming more and more urbanized.


2017 ◽  
Vol 10 (2) ◽  
pp. 201-213
Author(s):  
Surya Prakash Pattanayak ◽  
Sumant Kumar Diwakar

Digital change detection is the process that helps in determining the changes associated with Land use and Land cover properties with reference to geo-referenced multi-temporal remote sensing data. It helps in identifying change between two or more dates that is uncharacterized of normal variation. This work is an attempt to assess the district-wise changes in land use/land cover in Delhi, India. The study made use of LISS -III imageries of 2008 and 2012 year. The images were classified using Maximum Likelihood classification method. The output can be useful in many applications such as Land use changes, habitat fragmentation, rate of deforestation, urban sprawl and other cumulative changes through spatial and temporal analysis. The study shows that Delhi land cover from 2008 to 2012 a major rapid changes in the landscape as there is high growth in the fallow and built up area. Agriculture land and forest area has reduced marginally and water body is showing almost stagnant condition over time.


Sign in / Sign up

Export Citation Format

Share Document