lulc change
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 97)

H-INDEX

11
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Laju Gandharum ◽  
Djoko Mulyo Hartono ◽  
Asep Karsidi ◽  
Mubariq Ahmad

Uncontrolled urban expansion resulting from urbanization has a disastrous impact on agricultural land. This situation is being experienced by the densely populated and fertile island Java in Indonesia. Remote sensing technologies have developed rapidly in recent years, including the creation of Google Earth Engine (GEE). Intensity analysis (IA) is increasingly being used to systematically and substantially analyze land-use/land-cover (LULC) change. As yet, however, no study of land conversion from agriculture to urban areas in Indonesia has adopted GEE and IA approaches simultaneously. Therefore, this study aims to monitor urban penetration to agricultural land in the north coastal region of West Java Province by applying both methods to two time intervals: 2003–2013 and 2013–2020. Landsat data and a robust random forest (RF) classifier available in GEE were chosen for producing LULC maps. Monitoring LULC change using GEE and IA has demonstrated reliable findings. The overall accuracy of Landsat image classification results for 2003, 2013, and 2020 were 88%, 87%, and 88%, respectively. IA outputs at interval levels for all categories showed that the annual change-of-area rate was higher during 2013–2020 than during 2003–2013. At the category level, IA results showed that the area of agricultural land experienced net losses in both periods, with net loss in 2013–2020 being 2.3 times greater than that in 2003–2013 (∼1,850 ha per year). In contrast, the built-up area made net gains in both periods, reaching almost twice as much in the second period as in the first (∼2,030 ha per year). The transition-level IA performed proved that agricultural land had been the primary target for the expansion of built-up areas. The most extensive spatial distribution of land conversion from agriculture to built-up area was concentrated in the regencies of Bekasi, Karawang, and Cirebon. These findings are intended to provide stakeholders with enrichment in terms of available literature and with valuable inputs useful for identifying better urban and regional planning policies in Indonesia and similar regions.


2021 ◽  
Author(s):  
Akhil Singh Rana ◽  
Caglar Senaras ◽  
Benjamin Bischke ◽  
Patrick Helber ◽  
Timothy Davis ◽  
...  

2021 ◽  
Vol 13 (24) ◽  
pp. 13758
Author(s):  
Kotapati Narayana Loukika ◽  
Venkata Reddy Keesara ◽  
Venkataramana Sridhar

The growing human population accelerates alterations in land use and land cover (LULC) over time, putting tremendous strain on natural resources. Monitoring and assessing LULC change over large areas is critical in a variety of fields, including natural resource management and climate change research. LULC change has emerged as a critical concern for policymakers and environmentalists. As the need for the reliable estimation of LULC maps from remote sensing data grows, it is critical to comprehend how different machine learning classifiers perform. The primary goal of the present study was to classify LULC on the Google Earth Engine platform using three different machine learning algorithms—namely, support vector machine (SVM), random forest (RF), and classification and regression trees (CART)—and to compare their performance using accuracy assessments. The LULC of the study area was classified via supervised classification. For improved classification accuracy, NDVI (normalized difference vegetation index) and NDWI (normalized difference water index) indices were also derived and included. For the years 2016, 2018, and 2020, multitemporal Sentinel-2 and Landsat-8 data with spatial resolutions of 10 m and 30 m were used for the LULC classification. ‘Water bodies’, ‘forest’, ‘barren land’, ‘vegetation’, and ‘built-up’ were the major land use classes. The average overall accuracy of SVM, RF, and CART classifiers for Landsat-8 images was 90.88%, 94.85%, and 82.88%, respectively, and 93.8%, 95.8%, and 86.4% for Sentinel-2 images. These results indicate that RF classifiers outperform both SVM and CART classifiers in terms of accuracy.


2021 ◽  
pp. 279-294
Author(s):  
Nitesh Patidar ◽  
Pulakesh Das ◽  
Poonam Tripathi ◽  
Mukunda Dev Behera

2021 ◽  
Vol 10 (12) ◽  
pp. 809
Author(s):  
Jing Sun ◽  
Suwit Ongsomwang

Land surface temperature (LST) is an essential parameter in the climate system whose dynamics indicate climate change. This study aimed to assess the impact of multitemporal land use and land cover (LULC) change on LST due to urbanization in Hefei City, Anhui Province, China. The research methodology consisted of four main components: Landsat data collection and preparation; multitemporal LULC classification; time-series LST dataset reconstruction; and impact of multitemporal LULC change on LST. The results revealed that urban and built-up land continuously increased from 2.05% in 2001 to 13.25% in 2020. Regarding the impact of LULC change on LST, the spatial analysis demonstrated that the LST difference between urban and non-urban areas had been 1.52 K, 3.38 K, 2.88 K and 3.57 K in 2001, 2006, 2014 and 2020, respectively. Meanwhile, according to decomposition analysis, regarding the influence of LULC change on LST, the urban and built-up land had an intra-annual amplitude of 20.42 K higher than other types. Thus, it can be reconfirmed that land use and land cover changes due to urbanization in Hefei City impact the land surface temperature.


2021 ◽  
Vol 13 (22) ◽  
pp. 4498
Author(s):  
Eman Mostafa ◽  
Xuxiang Li ◽  
Mohammed Sadek ◽  
Jacqueline Fifame Dossou

Rapid population growth is the main driver of the accelerating urban sprawl into agricultural lands in Egypt. This is particularly obvious in governorates where there is no desert backyard (e.g., Gharbia) for urban expansion. This work presents an overview of machine learning-based and state-of-the-art remote sensing products and methodologies to address the issue of random urban expansion, which negatively impacts environmental sustainability. The study aims (1) to investigate the land-use/land-cover (LULC) changes over the past 27 years, and to simulate the future LULC dynamics over Gharbia; and (2) to produce an Urbanization Risk Map in order for the decision-makers to be informed of the districts with priority for sustainable planning. Time-series Landsat images were utilized to analyze the historical LULC change between 1991 and 2018, and to predict the LULC change by 2033 and 2048 based on a logistic regression–Markov chain model. The results show that there is a rapid urbanization trend corresponding to a diminution of the agricultural land. The agricultural sector represented 91.2% of the total land area in 1991, which was reduced to 83.7% in 2018. The built-up area exhibited a similar (but reversed) pattern. The results further reveal that the observed LULC dynamics will continue in a like manner in the future, confirming a remarkable urban sprawl over the agricultural land from 2018 to 2048. The cultivated land changes have a strong negative correlation with the built-up cover changes (the R2 were 0.73 in 1991–2003, and 0.99 in 2003–2018, respectively). Based on the Fuzzy TOPSIS technique, Mahalla Kubra and Tanta are the districts which were most susceptible to the undesirable environmental and socioeconomic impacts of the persistent urbanization. Such an unplanned loss of the fertile agricultural lands of the Nile Delta could negatively influence the production of premium agricultural crops for the local market and export. This study is substantial for the understanding of future trends of LULC changes, and for the proposal of alternative policies to reduce urban sprawl on fertile agricultural lands.


2021 ◽  
Vol 15 (10) ◽  
pp. e0009879
Author(s):  
Panjun Gao ◽  
Eva Pilot ◽  
Cassandra Rehbock ◽  
Marie Gontariuk ◽  
Simone Doreleijers ◽  
...  

Background Dengue is a prioritized public health concern in China. Because of the larger scale, more frequent and wider spatial distribution, the challenge for dengue prevention and control has increased in recent years. While land use and land cover (LULC) change was suggested to be associated with dengue, relevant research has been quite limited. The “Open Door” policy introduced in 1978 led to significant LULC change in China. This systematic review is the first to review the studies on the impacts of LULC change on dengue dynamics in China. This review aims at identifying the research evidence, research gaps and provide insights for future research. Methods A systematic literature review was conducted following the PRISMA protocol. The combinations of search terms on LULC, dengue and its vectors were searched in the databases PubMed, Web of Science, and Baidu Scholar. Research conducted on China published from 1978 to December 2019 and written in English or Chinese was selected for further screening. References listed in articles meeting the inclusion criteria were also reviewed and included if again inclusion criteria were met to minimize the probability of missing relevant research. Results 28 studies published between 1978 and 2017 were included for the full review. Guangdong Province and southern Taiwan were the major regional foci in the literature. The majority of the reviewed studies observed associations between LULC change factors and dengue incidence and distribution. Conflictive evidence was shown in the studies about the impacts of green space and blue space on dengue in China. Transportation infrastructure and urbanization were repeatedly suggested to be positively associated with dengue incidence and spread. The majority of the studies reviewed considered meteorological and sociodemographic factors when they analyzed the effects of LULC change on dengue. Primary and secondary remote sensing (RS) data were the primary source for LULC variables. In 21 of 28 studies, a geographic information system (GIS) was used to process data of environmental variables and dengue cases and to perform spatial analysis of dengue. Conclusions The effects of LULC change on the dynamics of dengue in China varied in different periods and regions. The application of RS and GIS enriches the means and dimensions to explore the relations between LULC change and dengue. Further comprehensive regional research is necessary to assess the influence of LULC change on local dengue transmission to provide practical advice for dengue prevention and control.


2021 ◽  
Author(s):  
Tufa Feyissa Negewo ◽  
Arup Kumar Sarma

Abstract Change in land use land-cover (LULC) is a paramount dynamic present-day challenging landscape process capable of altering the hydrological responses in the catchment. As the land use planners require updated and high-resolution land resources information, understanding land cover change-induced status due to anthropogenic activities is significant. In this study, multitemporal cloud-free satellite imageries for periods (1990, 2002, and 2013) were used to quantify the spatiotemporal dynamics of land-use change detection and examine the effect on hydrological response using Geographical Information System (GIS) and Soil and Water Assessment Tool (SWAT) model in the Genale watershed, Ethiopia. The model performance was evaluated through sensitivity, uncertainty analysis, calibration, and validation process. The analysis of LULC change patterns for the area under study over 24 years showed that most parts of the green forest, barren land, and range shrubs were changed into agriculture, built up, wetlands, and water body with an increase of agriculture by 60%, built up 68%, pasture 37%, range shrubs 9%, and water body 57% over (1990 to 2013), which increased surface runoff, water yield, and sediment yield in the catchment. Significant changes in hydrological elements were observed at the sub-basins scale, mainly associated with the uneven spatial distribution of LULC changes compared to the whole watershed. The impacts of individual LULC change on hydrological response show a good correlation matrix. The regional government needs to modify land development policies and sustainable plans for examining LULC change detection using satellite imagery to avoid illegal land expansion activities.


2021 ◽  
Vol 13 (20) ◽  
pp. 11170
Author(s):  
Taingaun Sourn ◽  
Sophak Pok ◽  
Phanith Chou ◽  
Nareth Nut ◽  
Dyna Theng ◽  
...  

The main objective of this research was to evaluate land use and land cover (LULC) change in Battambang province of Cambodia over the last two decades. The LULC maps for 1998, 2003, 2008, 2013 and 2018 were produced from Landsat satellite imagery using the supervised classification technique with the maximum likelihood algorithm. Each map consisted of seven LULC classes: built-up area, water feature, grassland, shrubland, agricultural land, barren land and forest cover. The overall accuracies of the LULC maps were 93%, 82%, 94%, 93% and 83% for 1998, 2003, 2008, 2013 and 2018, respectively. The LULC change results showed a significant increase in agricultural land, and a large decrease in forest cover. Most of the changes in both LULC types occurred during 2003–2008. Overall, agricultural land, shrubland, water features, built-up areas and barren land increased by 287,600 hectares, 58,600 hectares, 8300 hectares, 4600 hectares and 1300 hectares, respectively, while forest cover and grassland decreased by 284,500 hectares and 76,000 hectares respectively. The rate of LULC changes in the upland areas were higher than those in the lowland areas of the province. The main drivers of LULC change identified over the period of study were policy, legal framework and projects to improve economy, population growth, infrastructure development, economic growth, rising land prices, and climate and environmental change. Landmine clearance projects and land concessions resulted in a transition from forest cover and shrubland to agricultural land. Population and economic growth not only resulted in an increase of built-up area, but also led to increasing demand for agricultural land and rising land prices, which triggered the changes of other LULC types. This research provides a long-term and detailed analysis of LULC change together with its drivers, which is useful for decision-makers to make and implement better policies for sustainable land management.


Sign in / Sign up

Export Citation Format

Share Document