scholarly journals Characterization of solid wastes from circulating fluidized bed combustion

1989 ◽  
Author(s):  
E J Anthony ◽  
G G Ross ◽  
E E Berry ◽  
R T Hemings ◽  
R K Kissel ◽  
...  
1995 ◽  
Vol 117 (1) ◽  
pp. 18-23 ◽  
Author(s):  
E. J. Anthony ◽  
G. G. Ross ◽  
E. E. Berry ◽  
R. T. Hemings ◽  
R. K. Kissel

The characterization of solid wastes from full-scale circulating fluidized bed combustors (CFBC) is necessary to ensure that disposal procedures or utilization strategies for the waste solids are successful. Pilot plants are extremely useful in providing hydrodynamic heat and mass transfer data that can be used to design and predict the performance of larger units. Combustion studies indicate that data from pilot-scale units can be used to approximate the behavior of a full-scale plant for different fuels and operating conditions, even when the pilot plant is not designed to properly scale the commercial unit. However, the same does not seem to be true for the determination of reduced sulphur, the other is species and geotechnical or physical properties of the solid wastes generated from pilot plants. The results of analyses of samples generated from two units are discussed. One is a 150 by 150 mm square, 7.3 m high pilot-scale CFBC located at the University of British Columbia and 22 MWe CFBC located at Chatham, New Brunswick. This unit is operated by the New Brunswick Electric Power Commission (NBEPC). Both used the same New Brunswick coal containing 7 percent sulphur. The data presented indicate that the pilot-scale unit can significantly overpredict the formation of sulphides, and compared with the full-scale unit, produces residues with much less promise for either disposal or utilization in low-strength concretes. The results strongly suggest that further work is necessary to understand better the phenomena that produce sulphides and affect the geotechnical properties of wastes.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2014 ◽  
Vol 629-630 ◽  
pp. 306-313 ◽  
Author(s):  
Mao Chieh Chi ◽  
Ran Huang ◽  
Te Hsien Wu ◽  
Toun Chun Fou

Circulating fluidized bed combustion (CFBC) fly ash is a promising admixture for construction and building materials due to its pozzolanic activity and self-cementitious property. In this study, CFBC fly ash and coal-fired fly ash were used in Portland cement to investigate the pozzolanic and cementitious characteristics of CFBC fly ash and the properties of cement-based composites. Tests show that CFBC fly ash has the potential instead of cementing materials and as an alternative of pozzolan. In fresh specimens, the initial setting time of mortars increases with the increasing amount of cement replacement by CFBC fly ash and coal-fire fly ash. In harden specimens, adding CFBC fly ash to replace OPC reduces the compressive strength. Meanwhile, CFBC fly ash would results in a higher length change when adding over 30%. Based on the results, the amount of CFBC fly ash replacement cement was recommended to be limited below 20%.


Sign in / Sign up

Export Citation Format

Share Document