scholarly journals Erratum: Different transseptal puncture for different procedures: Optimization of left atrial catheterization guided by transesophageal echocardiography

2017 ◽  
Vol 20 (2) ◽  
pp. 283
2016 ◽  
Vol 19 (4) ◽  
pp. 589 ◽  
Author(s):  
Giovanni Landoni ◽  
Andrea Radinovic ◽  
Patrizio Mazzone ◽  
Eustachio Agricola ◽  
Damiano Regazzoli ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Afonso B. Freitas-Ferraz ◽  
Mathieu Bernier ◽  
Kim O’Connor ◽  
Jonathan Beaudoin ◽  
Jean Champagne ◽  
...  

Abstract Background In patients undergoing left atrial appendage (LAA) closure, an accurate sizing of the LAA is key to optimize device sizing, procedural success and reduce complications. Previous studies have shown that intraprocedural volume loading increases LAA dimensions and improves device sizing. However, the safety and effects on LAA and device sizing of administering a fluid bolus during pre-procedural transesophageal echocardiography (TEE) are unknown. The aim of this study was to determine the safety and impact on LAA dimensions and device sizing of an intravenous (IV) fluid bolus administered during TEE in the setting of the pre-procedural work-up for LAA closure. Methods The study included a total of 72 patients who underwent TEE to assess suitability for LAAC and received a 500 ml IV bolus of normal saline. The LAA landing zone (LZ) and depth were measured by TEE before and after volume loading, and these measurements were used to predict the device size implanted during a subsequent percutaneous LAAC procedure. Results There were no complications associated with volume loading. The baseline mean LZ was 19.6 ± 3.6 mm at 90o, and 20.2 ± 4.1 mm at 135o. Following fluid bolus, the maximum diameter increased 1.5 ± 1.0 mm at 90o (p<0.001), and 1.3 ± 1.0 mm at 135o (p<0.001). The baseline mean depth of the LAA was 26.5 ± 5.5 mm at 90o, and 23.9 ± 5.8 mm at 135o. After fluid bolus, the mean depth increased by 1.5 ± 1.8 mm (p<0.001) and 1.6 ± 2.0 (p<0.001), at 90o and 135o, respectively. Sizing based on post-bolus measurements of the LZ significantly improved the agreement with the final device size selection during the procedure in 71.0% of cases (vs. 42.0% with pre-bolus measurements). Conclusions Volume loading during ambulatory TEE as part of the pre-procedural work-up of LAAC is safe and significantly increases LAA dimensions. This strategy may become the new standard, particularly in centers performing LAAC with no TEE guidance, as it improves LAA sizing and more accurately predicts the final device size.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Ijuin ◽  
A Hamadanchi ◽  
F Haertel ◽  
L Baez ◽  
C Schulze ◽  
...  

Abstract Background Percutaneous left atrial appendage closure (LAAC) is being established as an alternative option for atrial fibrillation (AF) patients with high bleeding risk. Few studies reported the influence of percutaneous LAAC on left atrial (LA) performance, but most of the studies demonstrated no remarkable changes in their parameters after the procedure. Method The study included 95 patients (age: 75±6.7 years, 67% male) whom underwent percutaneous LAAC in a single center between September 2012 and November 2018. LA strain was evaluated at three different time intervals by transesophageal echocardiography (baseline, 45 days and 180 days after procedure). All data were analyzed using a dedicated. 70 patients had atrial fibrillation whereas 25 were in sinus rhythm. Analysis was performed for peak atrial longitudinal strain (PALS) and peak atrial contraction strain (PACS) from segment of lateral wall in mid-esophageal 4 chamber view. The validity of lateral wall left atrial analysis was recently shown by our group. PACS was obtained in patients with sinus rhythm during exams. Results Compared to baseline, PALS was significantly increased after 45 days (12.4±8.4% vs 16.0±10.7%, p=0.001) and remained stable after 180 days (13.8±9.0% vs 17.0±12.4%, p=0.098). Even in only patients with atrial fibrillation during exams, it was increased (10.8±7.7% vs 13.4±7.1%, p=0.012 and 8.5±5.1% vs 13.9±8.1%, p=0.014). Similarly, compared with the baseline, PACS was significantly increased after 45 days and 180 days (5.8±3.9% vs 10.6±7.6%, p=0.001 and 4.5±2.6% vs 7.9±3.1%, p=0.036). The Changes in PALS and PACS Conclusion Our study has demonstrated for the first time the improvement in LA strain following LAAC within 45 days of implantation by transesophageal echocardiography and these values were maintained at least for 6 months. Further appraisal is warranted for confirmation of these preliminary findings.


2009 ◽  
Vol 108 (1) ◽  
pp. 70-72 ◽  
Author(s):  
K Annette Mizuguchi ◽  
Thomas M. Burch ◽  
Bernard E. Bulwer ◽  
Amanda A. Fox ◽  
Robert J. Rizzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document